И наконец: если бы Венера пролетела так близко, землетрясения, извержения вулканов и приливы в совокупности стерли бы жизнь с лица Земли, низведя ее в лучшем случае до уровня одноклеточных.
Чтобы полностью понять данные гипотезы и их недостатки (то, как странно должна была двигаться Венера, чтобы это совпадало с описываемыми Великовским событиями), то есть трудности, с которыми сталкивается любая теория, пытающаяся приписать появление комет к вулканическим извержениям на других планетах и т. д., рекомендую книгу «Scientists Confront Velikovsky» (Ученые против Великовского) (1977) под редакцией Дональда Голдсмита. К сожалению, Великовский убрал из этой книги документ, который сам предоставил для конференции.
Светоносный эфир
Сказка о светоносном эфире, этом таинственном неопределимом веществе, которым пропитано все пространство и которое проводит свет и тепло, восходит аж к XVII столетию, к конфликту волновой и корпускулярной теорий света. Христиан Гюйгенс (1629–1693) например считал, что световые волны продольны, как и звуковые: вибрирующая гитарная струна попеременно сжимает и разжимает воздух вокруг себя во всех направлениях; эти области сжатия и расширения перемещаются в воздухе, в итоге вибрирует барабанная перепонка и мы слышим соотношение сжатия и расширения как звук. Но если световые волны были бы нормальными волнами, то ясно, что должен существовать проводник, сжимающий их. Им не мог быть воздух, потому что мы, конечно, видим Солнце, несмотря на то, что оно отделено от нас космическим заливом. Так что проводник этот должен быть вселенским, вездесущим и неопределимым.
Догмат Исаака Ньютона относительно корпускулярной теории света — что он являет собой поток частиц, а не волн — на протяжении всего XVIII века не позволял обсуждать эфир как среду в рамках физики. Но в 1801 году английский физик Томас Юнг (1773–1829) провел опыты, которые вновь подтвердили волновую теорию света. Во второй половине XIX века также преобладало мнение, что все физические феномены можно объяснить с точки зрения механики. То время было слишком косным, чтобы могла возродиться идея эфира, который мог «нести» не только световые волны, но и другие явления, такие как гравитационное и магнитное притяжение. Важнейшими сторонниками этой гипотезы, вероятно, были два наиболее выдающихся физика XIX века: барон Кельвин (1824–1907) и Джеймс Клерк Максвелл (1831–1879).
Свет, конечно, не состоит из продольных волн, и в настоящее время это полностью доказано; но тем не менее свет, проходящий по такому проводнику, как эфир, должен был бы вызвать сопутствующую продольную волну. Поскольку признаков такой сопутствующей волны не было, оставался только один вывод: эфир не сжимается, то есть он твердый! И это было лишь одним из его странных свойств. Высокая скорость света показывала, что эфир очень эластичен при почти минимальной плотности. Он также оказывал очень интенсивное воздействие: гравитационная сила, притягивающая Землю к Солнцу, согласно одному источнику, была равна одному миллиону миллионов стальных столбов по 10 метров в диаметре каждый; учитывая промежутки между столбами, они заняли бы квадрат, сторона которого приблизительно была бы равна 10 000 километрам. Также в нем не должно было существовать трения, поскольку по быстро двигающимся объектам типа планет не было видно, чтобы эфир замедлял их движение.