Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 260

Приведу другой пример: в работе 1996 года я и мой бывший аспирант Эрик Заслоу использовали идею из теории струн для решения классической задачи алгебраической геометрии, связанной с вычислением количества так называемых рациональных кривых на четырехмерной поверхности K3. Напомню, что термин K3 относится к целому классу поверхностей — не к одной, а к бесконечному их числу. «Кривые» в данном случае являются двухмерными римановыми поверхностями, определяемыми алгебраическими уравнениями, и представляют собой топологические эквиваленты сфер, встроенных в эту поверхность. Количество этих кривых, оказывается, зависит только от количества узлов, расположенных на кривой, или точек, указывающих, где кривая пересекает саму себя. Например, цифра «восемь» имеет один узел, тогда как у круга количество узлов равно нулю.

Рассмотрим еще один пример с узлами, который связан с нашим предыдущим обсуждением конифолдных переходов (в десятой главе): если взять двухмерный бублик и сжать одну из окружностей, проходящих сквозь дырку, до точки, то получим что-то похожее на рогалик с соединенными концами. Если разделить эти два конца и разорвать поверхность, то получится топологический эквивалент сферы. Таким образом, можно считать такой «прищипнутый» бублик или «соединенный рогалик» сферой с одним узлом (или пересечением). Точно так же можно перейти к поверхностям более высокого рода и посмотреть на бублик с двумя дырками: сначала сожмем в точку окружность на «внутренней стенке» между двумя дырками, затем проделаем аналогичную операцию где-нибудь на «наружной стенке» бублика. Объект с такими двумя точками сжатия фактически является сферой с двумя узлами, поскольку, если мы разделим эти две точки и разорвем поверхность, то получим сферу. Дело в том, что если начинать с поверхности более высокого рода, скажем, с двумя, тремя или более дырками, то можно получить кривую или сферу с большим количеством узлов.

Позвольте мне переформулировать задачу в алгебраической геометрии, которую мы пытались решить вначале: для поверхности K3 мы хотим определить количество рациональных кривых с g узлами, которые можно расположить на этой поверхности, для любого значения g (положительного целого числа). Используя обычные методы, математики придумали формулу, которая хорошо работает для кривых с шестью или меньшим количеством узлов, но не с большим. Заслоу и я приступили к решению более общей задачи, то есть к кривым с произвольным количеством узлов. Вместо обычного метода мы взяли теорию струн и рассмотрели задачу с точки зрения бран внутри пространства Калаби-Яу.