, которые были введены в 1916 году индийским математиком и гением-самоучкой Шринивасой Рамануджаном.
[267] С тех пор наша функция в сочетании с высказанными Рамануджаном предположениями привела ко многим важным открытиям в области теории чисел. Насколько мне известно, наша работа впервые помогла установить серьезную связь между исчислительной геометрией (предметом расчета кривых) и тау-функцией.
Эта связь была закреплена последними работами Юйонг Дзена, молодого математика, недавно приглашенного работать в Гарвард, которого обучал мой бывший студент Юн Ли. Дзен показал, что не только рациональные кривые на поверхности КЗ связаны с тау-функцией, но расчет любых кривых произвольного рода на любой алгебраической поверхности связан с тау-функцией. И Дзен сделал это, доказав гипотезу, высказанную немецким математиком Лотаром Гёттше, который обобщил так называемую формулу Яу-Заслоу для рациональных кривых на поверхностях K3.[268] Новая обобщенная формула, справедливость которой доказал Дзен, носит имя Гёттше-Яу-Заслоу. Несколькими годами ранее бывший мой аспирант А. К. Лью опубликовал доказательство формулы Гёттше-Яу-Заслоу.[269] Но его доказательство, выполненное с помощью сугубо технического, аналитического метода, не дает объяснения в том виде, который устроил бы алгебраических геометров. Таким образом, статья Лью не рассматривается в качестве окончательного подтверждения этой формулы. Доказательство Дзена, основанное на аргументах алгебраической геометрии, получило более широкое признание.
Таким образом, благодаря выводу, изначально вытекающему из теории струн, мы поняли, что связь между исчислительной геометрией и тау-функцией Рамануджана, вероятно, глубже, чем предполагалось. Мы всегда ищем похожие связи между различными разделами математики, поскольку эти неожиданные связи часто могут привести нас к новому пониманию обоих разделов. Я подозреваю, что со временем будет открыто больше связей между исчислительной геометрией и тау-функцией.
В качестве яркого примера обогащения математики теорией струн приведем разработанную в 1990-х годах Виттеном и Натаном Зайбергом из Университета Ратджерса систему уравнений, получившую название Зайберга-Виттена (см. третью главу), которая ускорила исследование четырехмерных пространств. Эти уравнения оказались проще для использования, чем существующие методы, что привело к взрывному росту количества новых идей в работе с четырьмя измерениями, главной из которых является попытка классифицировать и систематизировать все возможные формы. Хотя уравнения Зайберга-Виттена первоначально были получены в теории поля, вскоре было показано, что они также могут быть выведены из теории струн. Кроме того, использование этой идеи в контексте теории струн значительно расширило наши представления о ней. «В ряде случаев, — говорит мой коллега, — Виттен обычно советовал математикам: вот, возьмите эти уравнения, они могут оказаться полезными. И действительно, они оказывались полезными». «Теория струн стала таким благом для математики, таким огромным источникам новых идей, что даже если она окажется несостоятельной как теория природы, она уже сделала для математики больше, чем любой вид человеческой деятельности, который я могу вспомнить», — говорит мой давний сотрудник Бонг Лиан из Университета Брандейса.