Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 276

Эспинволл, Грин и Моррисон хотели знать, наблюдается ли что-то типа флоп-перехода в природе и может ли пространство само себя разорвать, несмотря на то что в рамках общей теории относительности гладкое искривленное пространство-время не склонно к разрыву. Мало того что это трио ученых хотели определить, встречается ли этот тип перехода в природе, они также хотели знать, может ли он иметь место в теории струн.

С этой целью они взяли многообразие Калаби-Яу со сферой (вместо футбольного мяча), расположенной внутри него, и подвергли его флоп-переходу, а затем использовали полученное (топологически измененное) многообразие для компактификации шести из десяти измерений пространства-времени, чтобы посмотреть, какой вид четырехмерной физики получится в результате. В частности, они хотели предсказать массу определенной частицы, которую фактически они могли вычислить. Затем они повторили тот же процесс, на этот раз используя зеркального партнера оригинального пространства Калаби-Яу. Однако в случае с зеркальным партнером сфера не сократилась до нулевого объема, пройдя через флоп-переход. Другими словами, не было никакого разрыва пространства, ни сингулярности; струнная физика, по словам Грина, «вела себя безупречно»[293]. Далее, они вычислили массу этой же частицы, на этот раз связанную с зеркальным многообразием, и сравнили результаты. Если бы предсказания подтвердились, то это означало бы, что разрыв пространства и сингулярность, о которых мы говорили, не являются проблемой; теория струн и геометрия, на которую она опирается, может справиться с этой ситуацией без проблем. Расчетная масса частицы соответствовала предсказанной почти идеально, а это означало, что разрывы такого рода могут возникнуть в теории струн без серьезных последствий.

Но на один вопрос их анализ не смог дать ответ: как такое может быть правдой? Как, например, сфера может сократиться до нулевого объема (размера точки в традиционной геометрии), если наименьший допустимый размер имеет отдельная струна? Возможные ответы содержатся в статье Виттена, которая вышла в то же время. Виттен показал, как петля струны может окружить пространственный разрыв, тем самым защищая Вселенную от пагубных эффектов, которые, в противном случае, могут возникнуть.

«Мы выяснили, что, когда классическая геометрия Калаби-Яу является сингулярной, четырехмерная физика выглядит ровной, — объясняет Эспинволл. — Массы частиц не стремятся к бесконечности, и ничего плохого не происходит». Таким образом, квантовая геометрия теории струн должна давать «сглаживающий эффект», беря то, что классически выглядит сингулярным, и делая это не сингулярным.