Теория струн и скрытые измерения Вселенной (Яу, Надис) - страница 43

поверхности, а бублик, с точки зрения топологии, перестанет быть бубликом). Если проследовать вдоль петли А, а затем вдоль петли В, то результирующий путь будет представлять собой новую петлю В×А. Напротив, если сначала обойти вокруг петли В, а потом вокруг петли А, возникнет петля А×В. Прайсман доказал, что в пространстве, кривизна которого всюду отрицательна — подобно внутренней поверхности седла, — петли В×А и А×В можно непрерывно преобразовать одну в другую путем изгиба, растяжения и сжатия только в одном особом случае: а именно, если петлю, кратную петле А (такую петлю можно получить, обойдя вокруг петли А один или целое число раз), можно плавно преобразовать в петлю, кратную петле В. В этом частном случае петли А и В носят название коммутирующих, точно так же, коммутирующими являются операции сложения и умножения (2 + 3 = 3 + 2 и 2 × 3 = 3 × 2), тогда как вычитание и деление некоммутативны (2 – 3 ≠ 3 – 2 и 2/3 ≠ 3/2).

Моя теорема имела несколько более общую форму, чем теорема Прайсмана. Данная теорема была применима к любому пространству неположительной кривизны (то есть либо отрицательной, либо — в отдельных местах — равной нулю). Для доказательства более общего случая мне пришлось прибегнуть к разделу математики, который никогда до этого не использовался в топологии или дифференциальной геометрии, — к теории групп. Группой в математике называется набор элементов, для которых выполняется определенный набор правил, таких как обязательное присутствие в группе нейтрального (например, единицы) и обратного (например, 1/x для каждого x) элементов. Группа является замкнутой, то есть, проведя определенную операцию над двумя элементами группы (такую, как сложение или умножение), мы получим еще один ее элемент. Помимо этого, в группе должен выполняться ассоциативный закон — а именно a × (b × c) = (a × b) × c.

Элементами той группы, которую рассматривал я (так называемой фундаментальной группы), были петли, которые можно изобразить на поверхности, такие как упоминавшиеся уже петли А и В. В том случае, если в пространстве есть нетривиальные петли, говорят, что пространство имеет нетривиальную фундаментальную группу. И напротив, если каждую петлю в пространстве можно стянуть в точку, то соответствующая фундаментальная группа будет тривиальной. Я доказал, что в том случае, если две петли коммутируют (то есть А × В = В × А), должна существовать «подповерхность» более низкой размерности — а именно имеющая форму тора, — находящаяся где-то внутри данной поверхности.

В двухмерном случае тор можно представить как «произведение» двух окружностей. Рассмотрим сначала одну окружность — она будет проходить вокруг дырки бублика, и представим, что все ее точки являются центрами одинаковых окружностей. Соединив вместе эти окружности, мы и получим тор. Мы как бы нанизываем колечки на нитку и связываем концы нитки вместе. Именно это и подразумевалось под утверждением, что тор — это произведение двух окружностей. В моей теореме (основанной, в свою очередь, на статье Прайсмана) в роли таких окружностей выступали петли