Рис. 3.1. Геометр Чарльз Морри (фотография Джорджа М. Бергмана)
Морри был специалистом в области дифференциальных уравнений в частных производных, и методы их решения, разработанные им, отличались большой глубиной. Отдавая ему должное, могу сказать, что именно лекции Морри стали основой всей моей дальнейшей научной карьеры.
Дифференциальные уравнения используются везде, где встречаются бесконечно малые изменения переменных, в том числе и в физических законах. Одним из наиболее важных и сложных классов этих уравнений являются так называемые дифференциальные уравнения в частных производных, описывающие изменение некоей функции при изменении сразу нескольких переменных. При помощи дифференциальных уравнений в частных производных можно предсказать поведение данной, функции не только, например, во времени, но и при изменении других переменных, например при перемещении в пространстве вдоль осей x, y или z. Подобные уравнения дают возможность заглянуть в будущее и увидеть возможную эволюцию системы; без них физика была бы лишена своей предсказательной силы.
Геометрия тоже не может обойтись без дифференциальных уравнений. Мы используем их, чтобы определить кривизну объекта и вычислить ее изменение при переходе от точки к точке. Именно это делает геометрию необходимой для физических приложений. Приведем простой пример: ответ на вопрос, будет ли катящийся мяч двигаться с ускорением, то есть будет ли его скорость изменяться во времени, напрямую зависит от кривизны траектории мяча. Это только один пример тесной связи кривизны с физическими понятиями. По этой причине и геометрия — «наука о пространстве», включающая в себя все, что связано с кривизной, — играет важную роль во многих областях физики.
Фундаментальные законы физики являются локальными в том смысле, что они всегда описывают поведение той или иной физической величины не во всем пространстве, а в отдельных, локальных, областях. Это справедливо даже для общей теории относительности, стремящейся описать кривизну всего пространственно-временного континуума в целом. В конце концов, и производные, фигурирующие в дифференциальных уравнениях, тоже берутся именно в отдельных точках. Все это создает проблему для физиков. Как сказал математик UCLA Роберт Грин: «Итак, исходя из локальной информации, такой как кривизна, необходимо узнать строение объекта как целого. Вопрос состоит в том, как это сделать»[25].
Рассмотрим для начала кривизну поверхности Земли. Поскольку провести измерения всего земного шара сразу крайне сложно, Грин предложил рассмотреть вместо этого следующую картину. Представим себе собаку, сидящую на прикрепленной к столбу цепи во дворе. Если у собаки есть возможность перемещаться хотя бы в небольших пределах, она сможет узнать, какую кривизну имеет тот участок земли, который ограничен длиной цепи. В данном случае предполагается, что эта кривизна положительна. Представим теперь, что в каждом дворе мира живет подобная собака, привязанная к столбу, и каждый из участков земли вокруг этих столбов имеет положительную кривизну. Сведя воедино все эти данные о локальной кривизне, можно сделать вывод, что топологически данная планета должна иметь сферическую форму.