Так фабрика оказывается захваченной террористами — этими корыстными чертежами. В некотором смысле она объявляла во всеуслышание, что её можно захватить. Если вы снабжаете вашу фабрику механизмами настолько совершенными, что они могут делать всё, что угодно, что им велит любой чертёж, то вряд ли удивительно, что рано или поздно появляется чертёж, который велит этим механизмам делать копии самого себя. Фабрика все более наполняется этими злодейскими механизмами, производящими в большом количестве злодейские чертежи по созданию большего количества механизмов, которые будут делать большее количество самих себя. Наконец, несчастная бактерия взрывается и выпускает миллионы вирусов, которые будут инфицировать новые бактерии. Это обычный жизненный цикл вирусов в природе.
Я назвал РНК-репликазу и РНК соответственно механизмом и чертежом. Это так в некотором смысле и есть; мы обсудим другие аспекты в другой главе, но они при этом ещё и молекулы, и люди-химики могут очистить их, разлить в бутылки и хранить на полке. Именно это и делал Золь Шпигельман с коллегами в Америке в 1960-х годах. Они помещали эти две молекулы вместе в раствор, начинались завораживающие вещи. В пробирке, с помощью РНК-репликазы, молекулы РНК действовали как матрицы для синтеза копий себя. Механизмы и чертежи были экстрагированы и хранились в холодильнике отдельно друг от друга. Затем, как только они получили доступ друг к другу, а также к маленьким молекулам, необходимым в качестве сырья, растворённым в воде, так оба вернулись своим старым злодейским штучкам — даже несмотря на то, что они были в пробирке, а не в живой клетке.
Этот эксперимент — всего лишь короткий шаг к воспроизведению естественного отбора и эволюции в лаборатории; химическая версия компьютерных биоморфов. Моделирование естественного отбора производилось в длинном ряду пробирок, каждая из которых содержала раствор РНК-репликазы и сырьё — маленькие молекулы, потребные для синтеза РНК. В каждой пробирке имеются «станки» и сырьё, но пока она пребывает в бездействии, не имея чертежа, по которому им нужно работать. Теперь капнем крошечное количество самой РНК в первую пробирку. Аппарат репликазы сразу же включается в работу и производит большое количество копий только что введённых молекул РНК расплывшихся по пробирке. Затем капля раствора из первой пробирки переносится во вторую. Процесс повторяется во второй пробирке, затем капля из неё переносится в третью, и так далее.
Иногда, из-за случайных ошибок копирования, спонтанно возникает чуть отличная мутантная молекула РНК. Если — неважно за счёт чего конкретно, новая вариация оказывается конкурентоспособнее старой, — возможно, вследствие её низкой «клейкости», она реплицируется быстрее или как-то иначе более эффективно, то новая вариация очевидно распространится в пробирке, в которой она возникла, превзойдя численностью родительский тип, её породивший. Тогда, капля раствора из этой пробирки, предназначенная для переноса в следующую, будет содержать новую вариацию мутантов, которая даст начало следующей «породе». Исследовав рибонуклеиновые кислоты в длинном ряду пробирок, мы увидим, что такое есть эволюционные изменения. Конкурентно превосходящие вариации РНК, произведенные в конце нескольких пробирочных «поколений» можно разлить в бутылки, подписать для будущего использования. Например, одна вариация под названием V2 копируется намного быстрее нормальной РНК Q-беты, возможно, потому, что она меньше. В отличие от РНК Q-беты, ей можно не «беспокоиться» насчёт планов производства репликазы — репликаза уже есть в растворе стараниями экспериментаторов. РНК V2 использовалась в качестве отправной точки для интересного эксперимента Лесли Оргела и его коллег в Калифорнии, в котором они создавали ей «трудную» окружающую среду.