Слепой часовщик (Докинз) - страница 82

Принцип электролокации (как это было названо) довольно хорошо понятен на уровне физики, хотя, конечно, не на субъективном уровне ощущений — попытки представить себя электрической рыбой. Следующие рассуждения равно применимы и к африканской, и к южноамериканской слабоэлектрической рыбе: конвергентность в этом отношении полная. Токи, текущие через воду из передней половины рыбы, изгибаюся назад и возвращаются к хвосту. В действительности не существует никаких дискретных «линий», а есть непрерывное «поле», невидимый кокон электричества, окружающий тело рыбы. Однако человеку легче всего представлять это поле в понятиях пучка изогнутых линий, исходящих из рыбы через ряд эмиттеров, размещённых на передней половине тела, изгибающихся в воде и входящих в рыбу в кончике её хвоста. У рыбы есть крошечные вольтметры, контролирующие напряжение в каждом эмиттере. Если рыба зависнет в свободной воде без рядом расположенных препятствий, и линии будут представлять собой плавные кривые. Все вольтметры в каждом эмиттере регистрируют напряжение как «нормальное» для этого эмиттера. Но если поблизости появляется некоторое препятствие, скажем, скала или нечто съестное, тогда линии тока, проходящие через препятствие, изменятся. В результате изменится напряжение на каком-то эмиттере, чья линия тока затронута, и соответствующий вольтметр регистрирует этот факт. Так мог бы действовать теоретически и компьютер, сравнивая эталоны напряжений, зарегистрированных вольтметрами всех эмиттерах, вычислять схему препятствия около рыбы. Очевидно, что мозг рыбы это и делает. Опять же, это не означает, что рыба — умный математик. У них есть аппарат, решающий необходимые уравнения — также, как наш мозг подсознательно решают уравнения каждый раз, когда мы ловим шарик.

Очень важно, чтобы тело самой рыбы оставалось абсолютно негибким. Компьютер в голове рыбы не смог бы справляться с дополнительными искажениями, которые последуют, если тело рыбы будет изгибаться и скручиваться подобно телу обычной рыбы. Электрические рыбы, по крайней мере дважды, независимо натолкнулись на этот изобретательный метод навигации, но они должны были за него заплатить: они должны были отказатся от нормального, высокоэффективного метода плавания, метода изгиба всего тела змееподобным образом. Они решили проблему, поддерживая тело негнущимся, как кочерга, но у них есть один длинный плавник по всей длине тела. Тогда вместо волнообразного изгиба всего тела, они изгибают только длинный плавник. Продвижение рыбы получается довольно медленным, но она двигается, и очевидно, что принесение в жертву быстрого движения стоит этого: прибыль в лучшей навигации, кажется перевешивает издержки от снижения скорости плавания. Замечательно, что южноамериканская электрическая рыба натолкнулась на почти такое же решение, как и африканская, но не совсем. Различие красноречиво. У обеих групп развился единый длинный плавник, проходящий по всей длине тела, но у африканской рыбы он проходит по спине, а у южноамериканской — по животу. Как мы видели, подобное различие в деталях очень характерно для конвергентной эволюции. Конечно, это столь же характерно и для конвергентных проектов людей-инженеров.