Нет. Это сводит неопределенность к вариантам Т и G, и теперь нам понадобится только один дополнительный вопрос, чтобы узнать разгадку. Итак, в соответствии с этим методом измерения, информационная емкость каждой “буквы” ДНК составляет два бита.
Во всех случаях, когда априорную неопределенность знаний получателя можно выразить как число равновероятных альтернатив N, количество информации в сообщении, сводящем эти альтернативы к одной, составляет log>2N (степень, в которую нужно возвести двойку, чтобы получить число альтернатив N). Если выбрать карту — любую карту — из обычной колоды, то сообщение, какая это карта, будет нести log>252, или 5,7 бит информации. Иными словами, если бы мы сыграли в большое число игр на угадывание, нам потребовалось бы в среднем 5,7 вопроса, требующих ответа “да” или “нет”, чтобы угадать эту карту, при условии, что мы будем задавать вопросы самым экономным способом. Первые два вопроса позволили бы нам узнать масть (например, “Она красная?” и “Это бубны?”), а оставшиеся три или четыре — успешно разделить и проверить всю эту масть (“Старше шестерки?” и тому подобное), в итоге неминуемо придя к искомой карте. Когда априорная неопределенность представляет собой своего рода смесь альтернатив, которые не равновероятны, формула Шеннона преобразуется в немного усложненную формулу для расчета взвешенного среднего, которая, впрочем, по сути аналогична. Кстати, шенноновская формула взвешенного среднего — это именно та формула, которую физики с XIX века используют для расчета энтропии. Отсюда следуют интересные вещи, но здесь я не буду их рассматривать[124].
Этих сведений из теории информации будет достаточно. Эта теория давно привлекает меня, и я использовал ее в некоторых своих научных работах разных лет. Теперь давайте подумаем, как ее можно использовать, чтобы ответить на вопрос, увеличивается ли количество информации в геномах в ходе эволюции. Во-первых, давайте вспомним разницу между тремя понятиями: суммарной информационной емкости, реально использованной информационной емкости и настоящим количеством информации, записанной самым экономным из всех возможных способов. Суммарная информационная емкость человеческого генома измеряется в гигабитах. У обыкновенной бактерии кишечной палочки (Escherichia coli) она измеряется в мегабитах. Мы, как и все другие животные, происходим от предка, которого, если бы у нас сегодня была возможность его исследовать, мы отнесли бы к бактериям. Итак, за миллиарды лет эволюции, прошедшие со времени жизни этого предка, информационная емкость нашего генома могла вырасти где-то на три порядка (степени десятки) — примерно в тысячу раз. Это довольно правдоподобно и утешительно для человеческого достоинства.