Вы, разумеется, шутите, мистер Фейнман! (Фейнман) - страница 55

А сидящий на кушетке силится понять весь этот ужас, который продолжается, и на большой скорости, целых пятнадцать минут!

И вот стоящий заканчивает, а сидящий говорит:

— Да, да. Это тривиально.

Мы, физики, и посмеивались над ними, и старались их понять. Мы решили, что «тривиально» означает «доказано». И говорили им так: «У нас имеется новая теорема, согласно которой математики способны доказывать только тривиальные теоремы, поскольку каждая теорема, будучи доказанной — тривиальна».

Математикам наша теорема не нравилась, что и позволяло мне их дразнить. Я говорил, что в их науке нет никаких сюрпризов — математики доказывают только то, что и так очевидно.

Однако топология математикам очевидной отнюдь не казалась. В ней присутствовало множество замысловатых возможностей, которые были «контринтуитивны». И мне пришла в голову идея. Я бросил им вызов: «Готов поспорить, что не существует ни одной теоремы, которую вы сумеете мне изложить — но только так, чтобы я все понял, — и про которую я не смогу сразу сказать, истинна она или ложна».

Выглядело это зачастую так. Они объясняли мне:

— У вас есть апельсин, правильно? Вы разрезаете его на конечное число кусочков, потом снова складываете их вместе и апельсин получается размером с солнце. Истинно или ложно?

— Промежутков между кусочками нет?

— Нет.

— Невозможно! Быть такого не может.

— Ха! Вот он нам и попался! Все сюда! Это теорема такого-то о неизмеряемой мере!

Все страшно радовались — и вправду, попался, но тут я напоминал им:

— Вы же говорили об апельсине. А апельсин невозможно разрезать на кусочки, которые мельче атомов.

— Но у нас есть условие непрерывности: мы можем резать его и резать!

— Да нет, вы же сказали: апельсин. Ну я и предполагал, что речь идет о реальном апельсине.

В итоге, я всегда побеждал. Если я угадывал верно — очень хорошо. Если неверно, мне неизменно удавалось найти в их упрощениях нечто, о чем они забыли упомянуть.

На самом-то деле, мои догадки были не лишены определенных достоинств. У меня имелась схема, которую я и сейчас применяю, когда человек объясняет мне что-то, что я пытаюсь понять: я все время приводил примеры. Ну, скажем, математики придумывают роскошную теорему и приходят в полный восторг. Пока они перечисляют мне условия, я сооружаю в уме нечто, всем этим условиям отвечающее. Например, у вас имеется множество (один мячик) — и множества непересекающиеся (два мячика). Далее, эти мячики меняют цвет, отращивают волосы или совершают еще что-то неподобное, — в моем, то есть, уме, пока я выслушиваю условия теоремы. Наконец, формулируется сама теорема, какая-нибудь чушь о мячике, к моему волосатому зеленому мячику нисколько не относящаяся, и я заявляю: «Ложно!».