Действительно, комплексные числа необходимы всем инженерам. В авиационно-космической промышленности они облегчили расчеты подъема крыла самолета. Инженеры-строители и инженеры-механики регулярно используют их для анализа вибрации элементов пешеходных мостов, небоскребов и автомобилей на ухабистой дороге.
Поворот на 90° также проливает свет на то, что на самом деле означает i>2 = –1. Если мы умножим положительное число на i>2, то стрелка, равная длине положительного числа, повернется на 180° в направлении с востока на запад, так как производится два поворота на 90° (по одному для каждой степени i), в итоге — на 180°.
Но умножение на –1 делает такое же сальто на 180°. Вот поэтому i>2 = –1.
Компьютеры вдохнули новую жизнь в комплексные числа и вековую проблему извлечения корней. Когда ПК не используются нами для веб-серфинга или отправки и получения электронной почты, они на наших столах способны обнаружить такое, что древние и представить себе не могли.
В 1976 году мой коллега по Корнуолльскому университету Джон Хаббард попытался применить в задачах по динамике метод Ньютона30, мощный алгоритм для поиска корней уравнений в комплексной плоскости. В соответствии с этим методом выбирается начальное значение (близкое к значению корня) и неоднократно производятся определенные вычисления. При этом на каждом последующем шаге используется значение, полученное на предыдущем. Этот метод позволяет быстро приблизиться к корням уравнения.
Хаббард заинтересовался множественными корнями. Какой из множественных корней можно найти методом Ньютона? Хаббард доказал, что из двух корней всегда будет найден тот, который наиболее близок к начальному значению. Однако при наличии трех и более корней его предыдущее доказательство не сработало.
Тогда Хаббард провел так называемый численныйэксперимент. Он запрограммировал компьютер на выполнение метода Ньютона, настроив устройство так, чтобы оно маркировало цветом миллионы различных начальных значений в соответствии с тем, к какому корню они приближались, и меняло интенсивность цвета в зависимости от скорости их приближения к корню.
До того как Хаббард увидел результат, он предполагал, что к корням уравнения быстрее всего притянутся наиболее близкие к ним по значению, и это отобразится в виде ярких точек на сплошном цветовом пятне. Но вот границы между пятнами? О них он даже не думал.
Компьютер выдал неожиданный результат.
Пограничная область между пятнами напоминала психоделические галлюцинации31. Цвета в ней смешивались беспорядочно, соприкасаясь друг с другом в невероятно большом количестве точек. Они всегда располагались в трех направлениях. Другими словами, где бы ни появлялись два цвета, между ними всегда присутствовал третий.