Но есть и вторая, более серьезная трудность: притяжение различных пар атомов различно. Для одних оно сильнее, чем для других. Почему? Потому что сила притяжения меняется в зависимости от расстояния: чем ближе объекты, тем сильнее они притягиваются. Атомы самых удаленных друг от друга частей Солнца и Земли испытывают наименьшее притяжение; атомы, находящиеся близко друг к другу, притягиваются сильнее, а те, которые между ними, испытывают среднее по силе притяжение. Интегральное исчисление позволяет просуммировать все эти изменяющиеся силы. Удивительно, но это можно осуществить по крайней мере в идеализированной модели, если считать Землю и Солнце твердыми шарами, состоящими из бесконечного числа точек непрерывной материи, причем каждая из этих точек оказывает бесконечно малое воздействие на другие. Как и во всех исчислениях, бесконечность и пределы, на помощь!
Исторически интеграл сначала появился в геометрии для нахождения площадей криволинейных фигур. Площадь круга можно представить как сумму множества тонких ломтиков пирога. В пределе имеем бесконечное множество кусочков, каждый из которых бесконечно тонкий. Эти кусочки затем можно ловко перестроить в прямоугольник, площадь которого нетрудно найти. Это типичный пример использования интеграла. Идея интегрирования заключается в том, чтобы взять что-то сложное, нарезать его на кусочки и перетасовать так, чтобы было легко складывать.
В трехмерном обобщении этого метода Архимед (а около 400 года до н. э. и Евдокс) рассчитывал объемы различных фигур путем их представления в виде стопки множества пластин или дисков, подобной порезанной на тонкие кусочки колбасе. Посчитав объемы различных ломтиков и гениально проинтегрировав их, Архимед и Евдокс получали полный объем исходной фигуры.
Сегодня будущим математикам и ученым по-прежнему даются в качестве упражнений классические геометрические задачи, требующие решения с помощью интегралов. Это одни из самых сложных в процессе обучения упражнений, и многие студенты ненавидят их. Но нет более верного способа отточить навыки работы с интегралами, которые понадобятся в любой области, где используются количественные вычисления, — от физики до финансирования.
Одна из таких мозгодробительных задач — вычисление объема твердого тела, которое является общей частью двух одинаковых цилиндров67, пересекающихся под прямым углом.
Требуется очень богатое воображение, чтобы представить себе эту трехмерную фигуру. Поэтому нет ничего постыдного в том, чтобы признать свое поражение и отыскать другой способ ее визуализации. В настоящее время компьютерная графика68 позволяет легко воспроизвести подобные фигуры[24].