В конце концов экспериментальная интуиция Эйнштейна стала математической интуицией. Мы встречаемся в его работах с поразительно изящными (т.е. приводящими к большому числу выводов без дополнительных допущений) и мощными приемами. В основе выбора этих математических приемов лежит, как мы увидим, выявление закономерностей, допускающих экспериментальную проверку. Но это появилось позже, когда физическая интуиция уже привела Эйнштейна к новому по сравнению с классической физикой разделению понятий
61
на формальные и физически содержательные, допускающие в принципе сопоставление с наблюдениями. До этого, в Цюрихе, у Эйнштейна не было критериев для выбора той или иной математической дисциплины или проблемы.
"Я видел, - пишет Эйнштейн, - что математика делится на множество специальных областей, и каждая из них может занять всю отпущенную нам короткую жизнь. И я увидел себя в положении Буриданова осла, который не может решить, какую же ему взять охапку сена. Дело было, очевидно, в том, что моя интуиция в области математики была недостаточно сильна, чтобы уверенно отличить основное и важное от остальной учености, без которой еще можно обойтись. Кроме того, и интерес к исследованию природы, несомненно, был сильнее; мне, как студенту, не было еще ясно, что доступ к более глубоким принципиальным проблемам в физике требует тончайших математических методов. Это стало выясняться лишь постепенно, после многих лет самостоятельной научной работы. Конечно, и физика была разделена на специальные области, и каждая из них могла поглотить короткую трудовую жизнь, так и не удовлетворив жажды более глубокого познания. Огромное количество недостаточно увязанных эмпирических фактов действовало и здесь подавляюще. Но здесь я скоро научился выискивать то, что может повести в глубину, и отбрасывать все остальное, все то, что перегружает ум и отвлекает от существенного" [4].
4 Эйнштейн, 4, 264.
Существенным, с точки зрения Эйнштейна, было то, что может послужить материалом или орудием для построения адекватной картины реального мира. В математике подобного критерия у него еще не было. Но уже было неясное, но глубокое представление о том, что в стройной системе геометрических теорем выражается упорядоченность мироздания. Первоначально это представление было элементарным: Эйнштейн думал, что геометрические объекты - псевдонимы реальных тел, что они по своей природе не отличаются от последних. Эйнштейну показалась удивительной ("чудом") возможность чисто логического получения достоверных сведений о наблюдаемых предметах. Позже он понял, что такая возможность исключена.