которая живет за счет другой археи,
Ignicoccus hospitalis. Таким образом, кажется все более вероятным, что минимальный размер генома свободно живущего прокариота, по крайней мере автотрофа, который не зависит от других форм жизни для добывания пищи, немного превышает 1 Мб. Текущий рекорд редукции генома среди свободно живущих клеток, около 1,3 Мб, принадлежит фотосинтезирующей морской альфа-протеобактерии
Pelagibacter ubique (SAR11), которая также является наиболее распространенной из известных клеточных форм жизни на Земле (Giovannoni et al., 2005). (Связь между размером популяции и размером генома потенциально важна, мы вернемся к этому вопросу в гл. 8.)
Рис. 5–1. Распределение размеров геномов среди бактерий и архей.
Как мы уже обсуждали в главе 3, бактериальные и архейные геномы характеризуются высокой плотностью белок-кодирующих генов, которые занимают большую часть ДНК. Бактериальные и архейные геномы демонстрируют одномодальное и довольно острое распределение плотности генов, большей частью 0,8–1,2 гена на Кб геномной ДНК (отсюда предельно простое эмпирическое правило: 1 ген на 1000 пар нуклеотидов). Архейное распределение по сравнению с бактериальным сдвинуто в сторону более высоких плотностей, таким образом, в среднем архейные геномы даже более компактны, чем бактериальные. Похоже, что как кодирующие, так и межгенные области у архей немного короче по сравнению с бактериями.
Таким образом, археи и бактерии весьма похожи в смысле характерных размеров и общей архитектуры геномов, но резко отличаются от эукариот, которые охватывают много больший интервал размеров генома, имеют белок-кодирующие гены, часто прерываемые интронами, и более длинные межгенные промежутки (см. гл. 8). Эти общие признаки бактерий и архей подтверждают концепцию «прокариотного принципа организации генома» (см. более подробно ниже).
Пространство-время прокариот и его эволюция
Фрактальное пространство-время генома, пангеномы и кластеризация прокариот
В главе 3 мы сосредоточились на трехкомпонентной структуре прокариотического геномного пространства, состоящего из ядра, оболочки и облака, и показали, что эта структура фрактальна. Одни и те же три компонента, а именно небольшое ядро, оболочка большего размера и огромное по сравнению с ними «облако», проявляются на любом уровне разбиения генного пространства, от мира прокариот в целом до совсем небольших групп бактерий (см. рис. 3-14). Непосредственным следствием этой фрактальности является важность «пангеномов» – всей общности генов, представляющих геномы, принадлежащие к кластеру архей или бактерий на данном уровне. Читатель может (и должен) немедленно спросить, что определяет кластеры и откуда берутся уровни. Пока предположим, что дерево рРНК Карла Вёзе (см. рис. 2–3) разумно описывает организацию пространства-времени мира прокариот и является по крайней мере одним из источников для кластеризации. В главе 6 мы обсудим применимость и смысл концепции древа жизни более глубоко и покажем, что дерево рРНК, хотя ни в коем случае и не является полным представлением истории эволюции прокариот, тем не менее вполне осмысленно.