Прикладные аспекты аварийных выбросов в атмосферу (Романов) - страница 10

Последовательности развития гипотетических аварий, схема которых приводится на Рис. 1.2, показывают, что практически при любой крупной аварии на промышленном объекте возникает очаг загорания, обусловленный большим количеством горючих материалов, имеющихся на производстве.

Известно, что при воспламенении горючих газовых или пылегазовых смесей по ним распространяется пламя, представляющее собой супер-позицию химических реакций с выделением большого количества тепла. При детонации эти процессы происходят чрезвычайно быстро, что приводит к образованию взрывной волны; при сравнительно медленном горении большинства пылегазовых горючих смесей взрывная волна не возникает. Поэтому, несмотря на широкое распространение в литературе такого названия, взрыва как такового не возникает. Подобное ошибочное толкование горения (без детонации) газообразных и парообразных веществ связано, очевидно, с видимыми результатами этого явления, приводящего к повышению давления в помещениях и к их частичному или полному разрушению. Поэтому, если не разделять процессы горения, носящего по своим внешним проявлениям характер взрыва, и собственно разрушения оболочек, а рассматривать все явление в целом, то такую аварийную ситуацию можно считать взрывом.



Рис. 1.2. Схема хронологии развития аварий.


Таким образом, называя горючие газообразные и парообразные вещества, а также пылегазовые смеси взрывоопасными, а их горение — взрывом, следует помнить об условности этих терминов. На практике часто невозможно с полной уверенностью идентифицировать горение и взрыв, а также установить последовательность этих событий. Следует отметить, что вероятность пожара после взрыва очень велика. Реализация взрыва после пожара или пожара после выброса токсического вещества в атмосферу в заметной степени обусловлены термодинамическими характеристиками рабочих тел, их физическим состоянием, наличием доступа окислителя и т. п. В любом случае, как это следует из схемы Рис. 1.2, авария на крупном промышленном производстве приводит к выбросу в окружающую среду токсических веществ

1.3. Математическое моделирование атмосферных выбросов

В настоящее время усилиями ученых всего мира создан единый фонд моделей процессов, протекающих в живой и неживой природе. Эти модели, как правило, основываются на небольшом числе фундаментальных принципов, связывающих воедино разнообразные факты и представления естественных |наук. Каждая модель в этом фонде занимает определенное место, установлены пределы ее применимости и связь с другими моделями. Наличие такого фонда моделей придает уверенность исследователям при их использовании в практической деятельности — ведь каждая из этих моделей благодаря связям с другими моделями опирается не столько на специфическую проверку ее самой, сколько на весь практический опыт человечества. Для каждого конкретного объекта в этом фонде можно выбрать наиболее подходящую модель или модифицировать ее из близких по характеру моделей.