Евклидово окно. История геометрии от параллельных прямых до гиперпространства (Млодинов) - страница 112

«Если человек свободно падает, он не чувствует собственного веса». Позднее Эйнштейн назвал это «счастливейшей мыслью» его жизни [228] . Был ли Эйнштейн печальным одиноким человеком? Вообще-то его личная жизнь – не голливудская сказка. Он женился, развелся, женился повторно и все время относился к брачной жизни отрицательно. От своего первенца он отказался – отдал на усыновление. Его младший ребенок оказался шизофреником и умер в психиатрической больнице. Нацисты гонялись за ним по всему континенту, а на второй родине ему так и не удалось почувствовать себя как дома. Однако мысль, доставившая Эйнштейну столько радости, в любой жизни оказалась бы значимой, имей она одинаковое значение для всех.

Эйнштейн говорил, что это осознание «поразило» его; оно стало откровением, приведшим ученого к его величайшему достижению. Падающий человек Эйнштейна стал эйнштейновым яблоком, семенем, его ростки – новая теория тяготения, новое представление о космологии, новый подход к физической теории вообще. Эйнштейн искал нечто подобное с 1905 года – новый принцип, могущий стать путеводным в поисках лучшей теории относительности. Он понимал, что исходная теория неполна. Даже с учетом всех следствий субъективности пространства и времени, его специальная теория все равно оставалась лишь новой кинетикой. Она описывала, как тела реагируют на воздействие определенных сил, но она их не определяла. Ясное дело, специальная теория относительности задумывалась так, чтобы идеально стыковаться с теорией Максвелла, поэтому загвоздка состояла не в электромагнитных силах. Силы гравитации же – совсем другое дело.

Единственной на 1905 год теорией тяготения оставалась ньютонова. Ньютон был не дурак: он дал такое описание гравитационным силам, чтобы оно увязывалось с его же кинетикой, т. е. с его законами движения. Поскольку специальная теория относительности заменила ньютоновские законы новой кинетикой, неудивительно, что Эйнштейн счел гравитационную теорию Ньютона неподходящей. Вспомним формулировку закона всемирного тяготения:

...

Сила тяготения между двумя материальными точками в любой момент времени пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними в данный момент времени.

Вот и вся недолга. Этот закон можно перевести на язык математики и производить количественные расчеты. Можно применить методы матанализа и перейти от материальных «точек» к протяженным объектам. А можно воткнуть его в законы движения и получить уравнения, описывающие, как объекты вроде небесных тел движутся под влиянием друг друга. Или, обильно попотев и проявив гениальность, можно приблизительно решить эти уравнения и предсказывать орбиты вновь открытых астероидов – это сделало знаменитым Гаусса: он предсказал орбиту Цереры [229] . Исследование следствий гравитационного закона Ньютона оказалось куда сложнее его исходной формулировки, и физики с легкостью нашли себе работу на тысячи человекочасов.