Алексей в роли Гейзенберга (насмехается): Ха-ха! Это означает, что пространство крошечных областей нельзя считать плоским… На самом деле, если приглядеться поближе – в масштабах планковской длины – возникают крошечные черные дырочки… Некрасиво…
Николай в роли Эйнштейна: Я сказал, хочу, чтобы крошечные области пространства были плоскими!
Алексей в роли Гейзенберга: А вот и нет!
Николай в роли Эйнштейна: А вот и да!
Алексей в роли Гейзенберга: Нет.
Николай в роли Эйнштейна: Да.
…Диалог продолжался в том же духе, покуда я не проснулся весь дрожа. (Это знак! Не следовало ложиться спать, не дописав главу.)
Одновременное применение принципа неопределенности и общей теории относительности к малым областям пространства приводит к фундаментальному противоречию с теорией относительности вообще. Кто прав – Гейзенберг или Эйнштейн? Если прав Эйнштейн, квантовая теория неверна. Но история с квантами не похожа на ошибочную: эксперимент и теория сходятся с точностью выше миллионной доли. Корнеллский физик Тоитиро Киносита, один из ведущих в квантовой электродинамике ученых, называет это «самой достоверной теорией на Земле, а может, и во всей Вселенной – в зависимости от того, сколько в ней инопланетян» [267] .
Если квантовая теория верна, значит, ошибочна теория относительности. Да, у теории относительности были свои поводы торжествовать. Однако есть нюанс. Победы теории относительности связаны с наблюдением макроскопических явлений – со светом, движущимся мимо Солнца, или с летающими вокруг Земли часовыми механизмами. Общая теория относительности в малых масштабах элементарных частиц пока еще не проверена. Измерять воздействие сил тяготения на них невозможно – их массы для этого слишком малы. Поэтому физики предпочитают ставить под вопрос резонность теории относительности, особенно эйнштейновы допущения о приблизительной плоскости мельчайших областей пространства. Быть может, необходимо пересмотреть теорию Эйнштейна в отношении ультрамикроскопических областей.
Если Планк и впрямь победил в споре с Эйнштейном, и метрика ультрамикроскопического пространства флуктуирует в широком диапазоне значений, возникает другой вопрос, поглубже. Какова структура пространства на ультрамикроскопическом уровне? Ключ к ответу, похоже, – в идее, которую Фейнман и другие проглотили с таким трудом и за которую дразнили Шварца, однако он не считал это недостатком, а просто милой особенностью возлюбленной своей теории. В царстве ультрамикроскопичности есть, судя по всему, другие измерения, свернутые в себе самих, настолько малые, что, как и квант в 1899 году, остаются незамеченными. Они и есть ключевой ингредиент в спасительном снадобье для общей теории относительности. Именно о них размышлял, но позднее отбросил десятки лет назад сам создатель теории относительности.