Евклидово окно. История геометрии от параллельных прямых до гиперпространства (Млодинов) - страница 143

Топология тоже влияет на колебания. Топологию так запросто не определишь, но, грубо говоря, она имеет отношение к свойствам поверхностей и пространств, которые связаны с их свойствами, но не с их метрикой (отношениями расстояний) или кривизной. Отрезок прямой топологически отличается от круга, потому что у него есть два конца, а у круга – ни одного. А вот разница между кругом и эллипсом тополога не интересует – это всего лишь вопрос кривизны. Можно еще вот так представлять себе эту разницу: любые две фигуры, которые можно трансформировать друг в друга растяжением без разрывов, имеют с точки зрения тополога одинаковые свойства.

Как топология пространства влияет на струну? Предположим, струнной теории нужны лишь два дополнительных измерения. Поскольку эти дополнительные измерения в струнной теории предположительно малы, представим «маленькое» двухмерное пространство – квадрат или прямоугольник – вроде плоскости, только конечной. Это пространство имеет один топологический тип. Теперь свернем из него цилиндр. Говоря геометрически, кажется, что он искривлен, однако считается плоским, как планарное пространство. Это означает, что у него нулевая кривизна: любая фигура, нарисованная на плоскости, может быть свернута в цилиндр без искажения расстояний между любыми двумя точками. Но цилиндр отличается от плоскости соединенностью – топологически. Например, на плоскости любой круг или другая простая замкнутая кривая могут быть сжаты до точки в пределах того же пространства. На поверхности цилиндра существуют кривые, с которыми так поступить нельзя, – например, любая кривая, располагающаяся вокруг оси цилиндра. Колебательное движение этого вида у струны в цилиндрическом пространстве ограничено и отличается от колебаний на плоскости, поэтому струнная теория предписывает Вселенной, имеющей такую форму, иные виды частиц и их взаимодействий. Цилиндр близко связан с другой фигурой – тором, он же пончик. Чтобы получить тор из цилиндра, достаточно соединить его края. Но возможны и гораздо более сложные топологии – например, вместо пончика с одной дыркой можно взять пончик со множеством дырок. Каждый имеет разные колебательные спектры. Чем больше измерений добавляем, тем сложнее возможные пространства, особенно если допустить неплоскость этих пространств. И во всех этих разнообразных пространствах возможные моды колебаний разнятся. Такое богатство видов колебаний и позволяет теории струн объяснять разнообразие элементарных частиц и их взаимодействий – во всяком случае, в теории.