Евклидово окно. История геометрии от параллельных прямых до гиперпространства (Млодинов) - страница 57

Затем, в точном соответствии с математической традицией, запомним, что нашими допущениями об этих улицах будут только факты, которые мы упомянули выше. Хотя в целях предметного иллюстрирования доказательства мы имеем в виду именно эти две авеню, как математики мы не можем включать в наше доказательство те свойства этих авеню, которые заранее не оговорили. Если вам известен другой издатель (неудачник – в отношении этой книги, по крайней мере) под названием «Рэндом Хаус», размещающийся дальше по улице, а также что Пятая и Шестая авеню отстоят друг от друга на некоторое расстояние, и что на некоем перекрестке там обитает слюнявый псих, выбросьте это все из головы. Математическое доказательство – упражнение в применении лишь исчерпывающе предложенных фактов, а в евклидовых «Началах» никакие особые свойства Нью-Йорка не значатся. Подобное неоправданное допущение вы, может, сделали бы, не задумываясь, и оно превратило бы все последующие доводы Прокла в ложные.

Итак, мы готовы сформулировать аксиому Плейфэра в предложенных нами терминах:

...

В плоскости Нью-Йорка через издательство «Фри Пресс», не размещающееся на Пятой Авеню, проходит одна и только одна авеню, параллельная Пятой, т. е. Шестая.

Это утверждение не в точности повторяет аксиому Плейфэра, поскольку мы, как и Прокл, допускаем, что существует хотя бы одна прямая – или улица (Шестая авеню) – параллельная данной (Пятой авеню). Это, вообще-то, еще требуется доказать, но Прокл интерпретировал одну из евклидовых теорем как гарантию этого факта. Примем это допущение и мы, и поглядим, можно ли, следуя логике Прокла, доказать аксиому в предложенной формулировке.

Чтобы доказать этот постулат, т. е. превратить его в теорему, необходимо продемонстрировать, что любая улица, проходящая через «Фри Пресс» и при этом не Шестая Авеню, непременно пересекает Пятую. Вроде бы это очевидно и следует из нашего повседневного опыта – именно поэтому такая улица и называется поперечной. Нам всего-то и надо, следовательно, доказать это без применения постулата параллельности. Начнем с того, что представим некую третью улицу, у которой лишь одно свойство: она прямая и проходит через «Фри Пресс». Назовем ее Бродвеем.

В своем доказательстве Прокл начал бы с того, что двинулся бы от «Фри Пресс» вдоль Бродвея к центру города. Вообразим улицу, идущую от того места Шестой авеню, где остановился Прокл, и перпендикулярную этой самой Шестой авеню. Назовем ее Николай-стрит, см. рисунок на следующей странице.

Николай-стрит, Бродвей и Шестая авеню образуют прямоугольный треугольник. По мере продвижения Прокла в центр города этот треугольник становится все больше.