Могут ли теории, построенные на основе, столь чуждой повседневному опыту, объяснить присущие ему явления, которые столь точно были смоделированы классической физикой?
Оказывается, могут, поскольку и мы, и всё, что нас окружает, это составные объекты, то есть структуры, состоящие из невообразимо большого количества атомов, — этих атомов больше, чем звезд в обозримой части Вселенной. И хотя все эти атомы подчиняются принципам квантовой физики, можно продемонстрировать, что их крупные совокупности, слагающие футбольные мячи, морковки, аэробусы и нас самих, конечно же сумеют избежать дифракции при прохождении через проемы. Поэтому, хотя компоненты обычных объектов и подчиняются квантовой физике, законы Ньютона представляют собой эффективную теорию, которая с высокой точностью описывает поведение сложных структур, образующих наш повседневный мир.
Это может показаться странным, но в науке есть много случаев, когда поведение крупного образования выглядит отличающимся от поведения его индивидуальных компонентов. Реакции одного нейрона едва ли такие же, как у человеческого мозга в целом, а знание свойств молекулы воды вряд ли много расскажет вам о поведении озера. В случае квантовой физики ученые и по сей день работают над тем, чтобы подробно выяснить, как законы Ньютона проистекают из квантовой области. Нам известно лишь, что составляющие элементы всех объектов подчиняются законам квантовой физики, а законы Ньютона представляют собой хорошее приближение для того, чтобы описать, как ведут себя макроскопические объекты, состоящие из таких квантовых компонентов.
Именно поэтому прогнозы теории Ньютона совпадают с нашим видением реальности, которое мы все развиваем по мере знакомства с окружающим миром. Но образ действия отдельных атомов и молекул кардинально отличается от того, с которым мы сталкиваемся в повседневной жизни. Квантовая физика представляет собой новую модель реальности, дающую нам иную картину Вселенной. Это картина, в которой многие понятия, основополагающие для нашего интуитивного понимания реальности, больше не имеют значения.
Впервые эксперимент с двухщелевой преградой провели в 1927 году американские физики-экспериментаторы Клинтон Дэвиссон (1881–1958) и Лестер Джермер (1896–1971) из компании «Белл Лабз». Они изучали, как пучок электронов — объектов, которые гораздо проще, чем бакиболы, — взаимодействует с кристаллом никеля. То, что материальные частицы, электроны, ведут себя подобно волнам на воде, оказалось поразительным экспериментом, который вдохновил квантовую физику. Поскольку на макроскопическом уровне такое поведение не наблюдалось, ученые долго не могли понять, насколько большим и сложным должно быть нечто, чтобы оно все еще продолжало проявлять подобные волновые свойства. Если бы эффект удалось продемонстрировать, используя людей или гиппопотамов, это вызвало бы настоящую сенсацию, но, как мы уже сказали, чем больше объект, тем, как правило, менее очевидными и менее устойчивыми становятся квантовые эффекты. Поэтому вряд ли какое-нибудь животное в зоопарке сможет пройти, подобно волне, сквозь железные прутья клетки. И все же физики-экспериментаторы стали наблюдать волновые свойства у все более крупных «частиц». Ученые надеются когда-нибудь повторить эксперимент с бакиболами, используя вирус, который не только гораздо больше по размерам, но и рассматривается некоторыми как живое существо.