v = H>0r,
чем дальше от нас галактика, тем больше ее скорость.
Величина z также очень удобна для оценки возраста объекта, от которого пришел свет. Действительно, z прямо связано с расстоянием, а расстояния – значительные и для их преодоления необходимо значительное время. Поэтому сигнал приносит информацию об объекте на более ранних стадиях расширения. Чем больше z, тем более ранняя эпоха исследуется. Отметим, что для больших z простую формулу Доплера необходимо корректировать с учетом ОТО.
Это открытие заставило раз и навсегда отказаться от понятия статичной Вселенной. Кроме того, предсказанное в решениях Фридмана и Леметра, оно стало еще одним подтверждением правильности новой теории гравитации.
После открытия Хаббла ученые обратили внимание на распределение скоростей, и обнаружили, что оно изотропно, как и полагалось в решениях Фридмана. Это означает, что наблюдатели, помещенные в различные точки пространства, не обнаружат выделенных направлений. Для каждого из них картина распределения скоростей разбегающихся галактик будет выглядеть как для нас: сферически симметричной. Таким образом, предположения Фридмана были сформулированы в виде космологического принципа, согласно которому в больших пространственных масштабах во Вселенной нет выделенных областей и направлений. Большинство специалистов согласно с тем, что любая модель Вселенной должна ему удовлетворять. По современным наблюдательным данным материя во Вселенной распределена однородно и изотропно на масштабах больших 50–100 Мпк.
Существует три типа решений Фридмана. Каждому из них соответствует свой тип геометрии пространства однородной и изотропной Вселенной. Для первого типа – 3-мерное пространство, в котором мы себя ощущаем в каждый момент времени, оказывается бесконечным, безграничным и с отрицательным знаком кривизны. Такие пространства называют гиперболическими, а в решениях Фридмана значение радиуса кривизны увеличивается со временем. Для второго типа решений 3-мерное пространство также оказывается бесконечным и безграничным, но не искривленным; его называют плоским. Первый и второй типы решений называют открытыми. Для третьего типа решений 3-мерное пространство является безграничным, но не бесконечным – его объем конечен. Это пространство с положительным знаком кривизны; его называют замкнутым. В качестве наглядного примера можно привести 2-мерное пространство обычной сферы. Замкнутое пространство можно классифицировать как 3-мерную сферу, экзотические свойства которой мы обсудим ниже. Примеры 2-мерных поверхностей разного типа приведены на рис. 8.6.