. Однако нельзя выбрать ни «лучший», ни «худший» темп, если часы конструктивно идентичны. То есть собственное время каждой инерциальной системы равноправно в отношении других. Это означает, что в СТО нет выделенного течения времени.
Мы также говорили, что на геометрическом языке инвариантность в СТО при переходе от одной инерциальной системы отсчета к другой эквивалентна инвариантности относительно лоренцевых вращений во всем плоском пространстве-времени. В ОТО из-за «включения» гравитации и, соответственно, искривления пространства-времени лоренц-инвариантность во всем пространстве-времени уже невозможна. Тем не менее, ОТО остается лоренц-инвариантной локально, то есть в малой окрестности каждого наблюдателя. Эта инвариантность является одним из принципов, лежащих в основе ОТО, и связана с принципом соответствия ОТО и СТО.
Хронометрическая теория. В ряде модификаций ОТО нарушена как раз локальная лоренц-инвариантность. Среди них и теория Хоржавы. В последнее время особой популярностью пользуется одна из ее реализаций, так называемая «жизнеспособная» («healthy») непроективная версия, разрабатываемая американскими физиками Диего Бласом и Ориолом Пуйоласом и нашим соотечественником Сергеем Сибиряковым. Эффекты, обсуждаемые ниже, в основном относятся именно к этой модификации ОТО.
Итак, чем же теория Хоржавы отличается от ОТО? В дополнение ко всем обычным полям ОТО добавляют скалярное поле φ, но не обычным образом. Направление его изменения в пространстве-времени определяет специально выделенное направление времени. Именно поэтому скалярное поле называют полем хронона. Тогда поверхности постоянных значений скалярного поля – это поверхности постоянного времени, или «одновременности». В уравнения скалярное поле входит только через производные, поэтому не стоит опасаться бесконечных значений поля хронона. Существенным является только его изменение, а не значения. Поскольку в пространстве-времени есть выделенное направление, то существуют выделенные системы отсчета. Это не свойственно ни СТО, ни ОТО, но свойственно векторно-тензорным теориям. Для наглядности приведем простейший «игрушечный» пример. Одно из решений новой теории – это плоское пространство-время (такое как в СТО) плюс поле хронона, которое оказывается просто временем, φ = t. В СТО мы можем перейти с помощью лоренцевых преобразований из одной координатной системы x, t в другую x′, t′, где время течет по-другому. В новой теории – не можем, поскольку значение скалярного поля при координатных преобразованиях не меняются, а это есть время. Таким образом, здесь, в отличие от СТО, существуют часы, которые отсчитывают выделенное время.