или число периодов n при известных остальных значениях переменной:
С другой стороны, если в формуле С>n = С>0∙(1 + i)>n перейти к логарифмам, получим:
Эти формулы используются как для расчета будущей стоимости капитала, вложенного под определенные проценты, так и для расчета годовой суммы процентов, полученной на вложенный капитал, а также для определения числа лет или периодов времени, по прошествии которых мы получим заданную сумму.
* * *
Если i = 12 % годовых, но проценты начисляются ежемесячно (n = 12), эквивалентная процентная ставка будет равняться
где i = 12 % годовых, n = 12 месяцев.
Если бы проценты начислялись раз в квартал, то эквивалентная процентная ставка равнялась бы
где i = 12 % годовых, n = 4 квартала.
Реальная процентная ставка изменяется под влиянием инфляции. Так, если мы вложим средства в государственные облигации под 5 %, а инфляция составит 3 %, реальная процентная ставка, характеризующая реальный прирост покупательной способности денег, будет определяться как разность между номинальной процентной ставкой и уровнем инфляции.
Реальная процентная ставка = Номинальная процентная ставка — Уровень инфляции.
Сколько времени должно пройти, чтобы вложенный капитал удвоился
Формула сложных процентов очень проста в использовании. Покажем, как можно вычислить конечную стоимость денег при известных процентной ставке и периоде времени. Например, если мы вложим первоначальный капитал C>0 = 10 000 евро на три года под 5 % годовых, каким будет конечный капитал С>3?
C>0 = 10000 евро; i = 5 % (0,05), n = 3 года.
Применив формулу С>3 = С>0∙(1 + i)>3 получим:
С>3 = 10000∙(1 + 0,05)>3 = 10000∙1,157625 = 11576,25 евро.
Однако расчет сложных процентов становится труднее, если другие члены этого уравнения неизвестны. Так, перед инвестором может встать вопрос: на какой срок нужно вложить капитал под определенный процент, чтобы вложенный капитал удвоился или чтобы получить определенную сумму?
Рассмотрим простой пример: допустим, мы хотим определить, за какой период времени вложенный капитал в 10000 евро удвоится, если процентная ставка находится на уровне i = 5 %. Зная начальный капитал С>0 = 10000 евро, конечный капитал С>n = 20000 евро и процентную ставку i = 5 %, применим формулу
и получим следующий результат:
Логарифмы легко вычислить с помощью инженерного калькулятора, программы наподобие Excel или на интернет-сайтах (для этого введите в строку поиска log х).
* * *
СКОЛЬКО ПРОЦЕНТОВ Я ПЛАЧУ НА САМОМ ДЕЛЕ?
Этим вопросом может задаться, например, покупатель автомобиля, выплачивающий автокредит.