Эти вопросы представляют собой вторую половину межзвездной транспортной проблемы Карла Сагана. Первую половину, которая заключается в том, что червоточина поддерживается с момента своего создания, Саган решил с помощью экзотического вещества. В своей книге Саган описывает червоточину, через которую путешествует Элеанора Эрроувэй, поддерживаемую с помощью экзотического вещества, но эта червоточина была создана в отдаленном прошлом некоторой высокоразвитой цивилизацией, все следы которой утеряны.
Мы, физики, конечно, не испытываем удовольствия, относя создание червоточин к предыстории. Мы хотим знать, как можно и можно ли вообще изменить топологию Вселенной сейчас, в рамках физических законов.
Мы можем представить себе две стратегии построения червоточины там, где раньше ее не было: квантовую и классическую.
Квантовая стратегия опирается на гравитационные вакуумные флуктуации (Врезка 12.4), т. е. гравитационный аналог электромагнитных вакуумных флуктуаций, обсуждавшихся выше: случайные, вероятностные флуктуации кривизны пространства, вызванные «заимствованием» энергии у соседних областей пространства с последующим ее возвращением. По-видимому, гравитационные вакуумные флуктуации существуют везде, но при обычных обстоятельствах они настолько малы, что никакой экспериментатор никогда их не обнаруживал.
Так же, как случайные движения электрона в вырожденном состоянии при его ограничении во все меньшей области становятся все
|
14.3. (То же самое, что и на рис. 13.7.) Диаграммы, иллюстрирующие квантовую пену. Геометрия и топология пространства не являются точно определенными, они являются вероятностными. Например, с вероятностью 0,1% может существовать пена, показанная на рис. (а), с вероятностью 0,4% — на рис (б) и с вероятностью 0,02% — на рис. (в) (и т. д.) |
интенсивнее (глава 4), гравитационные флуктуации вакуума сильнее в маленьких областях. То есть для коротких длин волн они сильнее, чем для длинных. В 1955 г. Джон Уилер сделал первый шаг в объединении законов квантовой механики и законов ОТО. При этом он пришел к выводу, что в области с размером, равным длине Планка—Уилера>121(1,62хЮ>-33 см или меньше), флуктуации вакуума настолько огромны, что пространство, которое мы знаем, «вскипает» и превращается в квантовую пену, ту же квантовую пену, которая является ядром сингулярности пространства-времени (глава 13; рис. 14.3).
Таким образом, квантовая пена содержится везде: внутри черных дыр, в межзвездном пространстве, в комнате, в которой вы находитесь, в вашем мозгу. Но для того чтобы увидеть ее, нам пришлось бы использовать сверхмощный микроскоп, проникая все глубже и глубже в микромир. Нам пришлось бы перейти из нашего обычного мира (сотни сантиметров) в мир атома (10“