Правда, красиво?
Это всего лишь один из способов нарисовать разные заряды всех частиц. В нашем случае каждая точка схемы соответствует особому сочетанию слабого изоспина и слабого гиперзаряда. Если вам известно, как они сочетаются, электрический заряд вы получите в качестве бесплатного приложения.
Наверняка вы быстро заметили, что сами по себе частицы подчиняются очень строгой закономерности. Если бы мы не слишком прилежно регистрировали частицы и некоторые пропустили, свободные места в схеме тут же подсказали бы нам, где их надо искать, и даже спрогнозировали бы кое-какие качества этих частиц. Такие схемы очень удобны еще и потому, что на них сразу видны сохраняемые величины в рамках того или иного закона.
Однако рисовать я могу только на двумерной странице, поэтому в этой схеме упущено много полезной информации. Например, кварки могут быть одного из трех цветов, однако красный кварк окажется на нашей схеме ровно на том же месте, что и синий. Иными словами, в зависимости от того, как мы поглядим на частицы, мы увидим разную симметрию.
Стандартная модель
Электрослабое взаимодействие и не только
Все эти симметрии — отнюдь не просто математические фокусы. В 1960 году Шелдон Глэшоу обнаружил, что слабое и электромагнитное взаимодействие можно объединить в одно «электрослабое взаимодействие». В течение следующих десяти лет эту гипотезу усовершенствовали Стивен Вайнберг и Абдус Салам. Это одна из милых особенностей симметрии. Взгляните на соотношение между слабым изоспином, слабым гиперзарядом и обычным электрическим зарядом, и вы увидите, как тесно они связаны. Это верный признак, что и стоящие за ними взаимодействия тоже, вероятно, можно объединить.
Объединение взаимодействий — это очень важное открытие. Во-первых, оно здорово экономит время. Если бы — в идеале — все физические законы можно было описать одной формулой, вам не пришлось бы столько зубрить. А еще это означает, что физические законы обладают глубокой внутренней согласованностью.
Ньютона запомнили на века, поскольку он сумел объединить движение планет, качание маятников и падение яблок в единый закон всемирного тяготения. Подобным же образом на сторонний взгляд электричество и магнетизм — это совсем разные вещи. Электричество управляет взаимодействием воздушных шариков, которые потерли о свитер, а магнетизм — компасами. Но стоит вам — если вы, конечно, Максвелл, — копнуть поглубже, и окажется, что вся разница только в том, движутся частицы или нет.
Объединить электромагнетизм и слабое взаимодействие оказалось несколько сложнее, однако суть этого объединения сводится к тому, что в самом начале времен была единая сила, описываемая одним уравнением, однако с