Ньютон. Закон всемирного тяготения. Самая притягательная сила природы (Дуран Гуардено) - страница 61

Хотя «Оптика» появилась только в 1704 году, почти через два десятилетия после «Математических начал натуральной философии», изучение природы света и цвета было одним из самых первых интересов английского гения. Его творческая работа в сфере оптики закончилась примерно в 1670 году, после этого он в основном разъяснял свои теории и результаты экспериментов: и в 1672 году, когда представил свою первую работу в этой сфере в «Философских трудах» Королевского общества, и в последнее десятилетие XVII века, когда занимался составлением «Оптики».

Представления Декарта о свете как вибрации частиц сделали среди ученых XVII века распространенной корпускулярную теорию света.


ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ

В ньютоновской физике свет состоит из частиц, корпускул, и распространяется по прямой линии, а не в виде волн. Сегодня считается, что свет имеет одновременно как корпускулярную, так и волновую природу. В материальных средах свет всегда движется по прямой линии, хотя на границе сред его скорость меняется, что вызывает эффект преломления. На рисунке представлены разные ситуации, которые можно наблюдать, когда луч света, двигающийся по траектории, пересекающей однородную среду, достигает поверхности, которая отделяет данную среду от внешней. Если угол падения перпендикулярен поверхности, разделяющей обе среды, луч света продолжит беспрепятственно двигаться по своей траектории (от n>1 к n>2 ). Если угол падения θ>1 немного больше, луч пересечет поверхность; хотя новая траектория не будет идеально совпадать с предыдущей, она образует новый угол θ>2 с перпендикуляром. Оба угла соотносятся по закону Снеллиуса: n>1 sin(θ>1) = n>2 sin(θ>2), где n>1 и n>2 – индексы преломления обеих сред, зависящие от скорости, с которой движется свет, когда их пересекает. Таким образом, можно вывести, например, что если среда оказывает значительное сопротивление прохождению света, она будет иметь высокий индекс преломления и, значит, угол падения θ>1 будет меньше, чем угол преломления θ>2 . Этот феномен мы всегда наблюдаем, опуская трубочку в стакан с водой: кажется, будто она становится толще. По этой же причине бассейны всегда кажутся более глубокими, чем на самом деле. На рисунке



также можно наблюдать, что часть луча света отражается от поверхности и возвращается в исходную среду. Угол отражения также подчиняется закону Снеллиуса, но поскольку в этом случае индекс преломления среды тот же, оба угла одинаковы. Если мы продолжим уменьшать угол падения θ>1 , мы придем к пограничной ситуации, когда угол преломления параллелен границе сред. Начиная с этой точки падающий луч уже не способен пересечь данную поверхность и отражается обратно в первую среду. В телекоммуникациях этот принцип используется, чтобы посылать световые лучи через оптическое волокно с высоким индексом преломления.