Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? (Фаус) - страница 7


После образовательной реформы Гумбольдта, прошедшей в Германии в XIX веке, основной задачей гимназий стало гуманитарное образование, основанное на изучении древнегреческого и латыни. Считалось, что такое образование лучше всего воспитывает моральные и интеллектуальные качества будущей элиты общества. Гимназический аттестат был необходим для поступления в университет.

Хотя в начале XX века появились и другие образовательные учреждения, гимназии по-прежнему считались элитарными учебными заведениями, а преподаватели латыни и греческого пользовались большим авторитетом. Преподавать в гимназии эти дисциплины могли только лица, имеющие степень доктора, хотя от других преподавателей этого не требовалось.

В сентябре 1911 года Гейзенберг начал обучение в Максимилиановской гимназии, директором которой в то время был его дед. Гимназический курс состоял из девяти классов. Как правило, школьники учились в гимназии с 11 до 19 лет. Почти 40 % времени уделялось классическим языкам и литературе, 24 % – немецкому языку и математике. Остальное время распределялось между историей, религией, французским языком и рисованием. Физика преподавалась только в трех старших классах по два часа в неделю.


Я очень интересовался теоремой Ферма и, разумеется, как и все остальные, провел некоторое время в попытках доказать ее.

Гейзенберг, вспоминая юность. Беседы с историком науки Томасом Куном, 1962 год

Гимназические преподаватели Гейзенберга всегда отмечали его исключительные знания. Вернер по праву считался одним из лучших учеников в своем классе и всегда имел высший балл по математике. Возможно, благодаря соперничеству с братом, которое поощрял отец мальчика, при поступлении в гимназию Вернер знал намного больше, чем требовалось. Неудивительно, что преподаватель математики предлагал ему в дополнение к обычным задачам другие, более сложные. Отец, видя интерес сына к математике, достал для него несколько книг… написанных на латыни, чтобы убить одним выстрелом двух зайцев. Должно быть, отец переоценивал возможности Вернера – вместе с другими книгами он передал ему докторскую диссертацию по теории чисел Леопольда Кронекера, опубликованную в 1845 году Конечно, Гейзенберг многое в этой работе не понял, но зато познакомился с простыми числами, критериями делимости, теоремой Ферма и так далее. В результате в 1916 году музыка и теория чисел стали основными интересами Вернера.


Магия целых чисел

В теории атомных спектров, на основе которой позднее была создана квантовая физика, основную роль играли именно целые числа. Однако сначала коротко расскажем о дискретности и непрерывности. Рассмотрим все десятичные дроби, целая часть которых равна нулю, например 0,73649100093. Существует бесконечное множество таких чисел, так как мы всегда можем добавлять к их записи все новые и новые знаки после запятой. Эти числа образуют непрерывное множество, так как для любых двух таких чисел можно найти третье число, заключенное между ними. Однако на этом бесконечном множестве можно выделить особые числовые ряды, например 1/2,1/3,1/4, 1/5 … или 1/22 , 1/32 , 1/42 , 1/52 … Эти ряды также будут содержать бесконечное множество членов, которые, однако, уже не будут образовывать непрерывного множества: к примеру, между 1/3 и 1/4 не заключено никакое число ряда. Говорят, что такие числа образуют дискретное множество. Теперь вернемся к атомным спектрам.