По мнению Кинга и Янишевски, наша чувствительность к тому, делится ли число без остатка или нет, влияет на наше поведение. Все мы немного похожи на Джерри Ньюпорта, таксиста из Тусона, раскладывающего числа на простые множители. Деление на два — это самый ранний и естественный тип деления. Именно поэтому мы настолько восприимчивы к арифметической закономерности, культурные ассоциации с которой глубоко укоренились в нашем сознании, — к различиям между четными и нечетными числами.
Какой пакет контактных линз кажется вам более привлекательным?
Фото из личного архива Дэна Кинга
Числа изобретены для подсчета точного количества: три зуба, семь дней, двенадцать коз. Однако, когда количество становится достаточно большим, мы перестаем использовать числа в их точном значении и прибегаем к аппроксимации, беря округленное число в качестве опорной точки. Например, когда я говорю, что на рынке была сотня людей, я не имею в виду, что там находилось именно сто человек. А утверждение, что Вселенной около 13,7 миллиарда лет, не означает, что ей 13 700 000 000 лет, ей 13,7 миллиарда лет плюс-минус несколько сотен миллионов лет. Большие числа воспринимаются как приближенные величины, тогда как малые числа — как величины точные, и между этими двумя системами очень непростое взаимодействие. Явно некорректным выглядит заявление, что в следующем году Вселенной исполнится 13,7 миллиарда и один год: ей по-прежнему будет 13,7 миллиарда лет до конца наших дней.
Как правило, круглые числа заканчиваются нулем. Слово «круглый» используется для обозначения этих чисел не потому, что ноль имеет форму окружности, а потому, что круглое число отображает завершение полного цикла счета. В нашей системе счисления десять цифр, поэтому любое сочетание таких циклов всегда кратно десяти.
Мы привыкли обозначать крупные величины круглыми числами, поэтому встреча с большим числом, которое не является круглым (скажем, 754 156 293), вызывает у нас протест. Психолог Корнельского университета Маной Томас утверждает, что из-за чувства дискомфорта, порождаемого большими некруглыми числами, их значение кажется нам меньше, чем оно есть в действительности: «Мы склонны полагать, что малые числа более точны, поэтому, видя точное большое число, инстинктивно предполагаем, что оно меньше, чем на самом деле» [15]. В итоге, по мнению Маноя Томаса, мы платим за дорогой продукт больше, если его цена представлена некруглым числом. Во время одного из экспериментов Томас дал испытуемым фотографии нескольких домов, где были также указаны их цены, в произвольном порядке представленные либо круглым числом (скажем, 390 000 долларов), либо чуть б