Красота в квадрате (Беллос) - страница 26

».

Метод анализа чисел на предмет их соответствия закону Бенфорда все чаще используется для выявления манипуляций с данными, причем не только в контексте финансовых махинаций, но и во всех тех случаях, к которым этот закон применим. В 2006 году Скотт де Марчи и Джеймс Гамильтон из Университета Дьюка написали, что предоставленные промышленными предприятиями сведения об уровне выброса свинца и азотной кислоты не удовлетворяют закону Бенфорда, а это говорит о вероятности искажения информации [5]. На основании закона Бенфорда политолог Мичиганского университета Уолтер Мибейн заявил о возможной фальсификации результатов президентских выборов в Иране. Мибейн проанализировал все протоколы голосования и обнаружил существенные расхождения в количестве голосов за Махмуда Ахмадинежада с законом Бенфорда, тогда как в результатах его соперника, сторонника реформ Мир-Хосейна Мусави, никаких отклонений от этого закона не наблюдалось. «Самое простое объяснение, — писал Мибейн, — состоит в том, что в результаты Ахмадинежада были искусственным образом включены дополнительные голоса, тогда как результаты Мусави остались нетронутыми». Ученые используют закон Бенфорда и в качестве инструмента диагностики. Так, во время землетрясений верхние и нижние значения показаний сейсмографа подчиняются данному закону. Малколм Сэмбридж из Австралийского национального университета проанализировал две разные сейсмограммы, на которых было зафиксировано землетрясение в Индонезии в 2004 году, — одна была записана в Перу, а другая в Австралии. Данные, отображенные на первой сейсмограмме, полностью соответствовали закону Бенфорда, тогда как на второй имели место небольшие отклонения. Сэмбридж объяснил это тем, что в районе Канберры могло произойти незначительное сейсмическое возмущение. Так проверка данных на соответствие закону первой цифры позволила выявить землетрясение, которое осталось незамеченным.

Цифра 1 встречается чаще цифры 2 не только на первой, но и на второй, третьей, четвертой и фактически любой позиции в записи числа. На представленном ниже рисунке продемонстрирована частотность вторых цифр в процентном выражении (среди которых есть теперь и цифра 0). Различия между этими показателями не столь ощутимы, как в случае первых цифр, но их все же можно использовать в целях диагностики, скажем в процессе анализа финансовых данных и результатов выборов. По мере продвижения к следующим позициям данные о частоте появления цифр стремятся к одному значению. Следовательно, закон Бенфорда касается не только первых цифр. В мире действительно