Наблюдение Галилея можно представить в виде уравнения, в котором фигурируют площадь и объем. Утверждение о том, что площадь объекта в поперечном сечении находится в прямо пропорциональной зависимости от квадрата высоты, тогда как объем — в прямо пропорциональной зависимости от куба высоты, можно выразить двумя уравнениями:
площадь = l (высота)>2;
объем = m (высота)>3,
где l и m — константы.
Исключив переменную «высота», получим следующее уравнение:
Его можно преобразовать так:
А это уравнение можно отнести к следующему типу:
y = kx>a,
где x и y — переменные, а k и a — константы.
Уравнение данного типа также называется степенным законом. Когда степенной закон выражен в такой форме, говорят, что переменная y находится в прямой пропорциональной зависимости от x>a, а когда он представлен в виде уравнения
, о котором шла речь выше, переменная
y находится в
обратной пропорциональной зависимости от
x>a.
График уравнения степенного закона y = x>⅔ размещен ниже. На первом графике в нормальном масштабе кривая по мере повышения выравнивается. Если y — это площадь, а x — объем, то это показывает, что по мере увеличения объема площадь тоже увеличивается, но не так быстро. На графике в двойном логарифмическом масштабе (второй график) степенной закон, отражающий прямо пропорциональную зависимость, дает прямую линию с наклоном вправо.
Кривая y = x>⅔ на графике в простом и двойном логарифмическом масштабе
Уравнение степенной зависимости между объемом и площадью обозначается также термином «закон масштабирования», поскольку оно демонстрирует, что происходит с измеримой величиной объекта (в данном случае площадью поперечного сечения) в результате увеличения общего размера.
В 30-х годах ХХ столетия швейцарский зоолог Макс Клайбер измерил вес нескольких видов млекопитающих и их уровень метаболизма (минимальное количество энергии, вырабатываемое животными в состоянии покоя) [18]. Когда ученый отобразил полученные данные на графике в двойном логарифмическом масштабе, получилась прямая линия, на основании которой он вывел следующий степенной закон:
скорость обмена веществ ≈ 70 (масса)>¾
Этот закон известен как закон Клайбера. Впоследствии биологи расширили его действие на всех теплокровных животных, как показано на представленном ниже рисунке. Скорость обмена веществ растет не так быстро, как масса, а это говорит о том, что чем крупнее животные, тем эффективнее они вырабатывают энергию. Было также выявлено, что жизнь животных подчиняется и многим другим законам масштабирования. Например, продолжительность жизни животных прямо пропорциональна массе в степени ¼, а частота сердечных сокращений обратно пропорциональна массе в степени ¼. Поскольку коэффициент степенного закона — это в большинстве случаев величина, кратная ¼, биологические степенные законы называют законами четвертного степенного масштабирования. Учитывая разнообразие животного мира (размер млекопитающих колеблется от этрусской мыши весом около одного грамма до голубого кита, который в 100 миллионов раз тяжелее), действительно замечательно, что информация о размере животного позволяет так много сказать о нем.