Одна из основных теорем греческой геометрии гласит, что лежащие накрест углы равны, а это значит, что линия, пересекающая две параллельные прямые, образует с ними равные углы. Следовательно, угол, который образует с лучами шест, равен углу в центре Земли. Эратосфен определил, что построенный шестом угол составляет пятидесятую часть полного круга, стало быть, и угол в центре Земли такой же. Получается, расстояние от Александрии до Сиены составляет одну пятидесятую окружности земного шара.
Выходит, что для того, чтобы вычислить окружность Земли, Эратосфену следовало просто умножить расстояние от Александрии до Сиены на пятьдесят. У греков уже была достаточно точная оценка этого расстояния — 5000 стадиев: его измерили бематисты (землемеры), шагомеры, определяющие расстояние и маршрут. (Эратосфену как создателю географии судьба подарила три географических факта, без которых его измерения были бы невозможны: египтяне расселились вплоть до Сиены, находящейся на Тропике Рака — самой северной широте, где Солнце не отбрасывает тень по крайней мере один раз в год; Сиена расположена строго на юг от Александрии; земля между этими двумя городами позволяла проложить более-менее ровную дорогу.) Один стадий в современной системе измерения равен 166 метрам. Таким образом, окружность Земли была рассчитана так: 166 метров × 5000 стадиев × 50, что составляет примерно 41 500 километров, всего на 1500 километров (около 4 процентов) больше правильного значения. На протяжении целой тысячи лет никому не удалось получить более точный результат, чем Эратосфен.
Сейчас город Сиена известен как Асуан. В нем до сих пор сохранился тот самый колодец, однако из-за безжалостного полуденного зноя, наступающего в день летнего солнцестояния, это место вряд ли станет Меккой для туристов.
Ко временам Эратосфена греческая математика уже прошла путь от первых идей Фалеса относительно треугольников до большого свода теорем о них вместе с доказательствами. Преобладание треугольника в греческом мышлении обусловлено тем, что все фигуры, построенные на основе прямых линий (квадраты, пятиугольники и т. д.), можно разбить на треугольники, а фигуры, образованные кривыми линиями (такие как окружности, эллипсы и параболы), — приближенно представить в виде треугольников.
Поскольку все треугольники делятся на прямоугольные (треугольники, в которых один угол прямой, или «четвертьоборотный»), древние греки ценили последние больше всего. На представленном ниже рисунке показано, как разбить треугольник на два треугольника поменьше с прямыми углами. Для этого необходимо провести перпендикуляр до самой большой стороны от противоположного угла треугольника. Когда мы начинаем изучать математику, нам рассказывают, что такое гипотенуза — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. И сразу после этого объясняют теорему Пифагора (нижний рисунок), которая гласит: