Когда прямые искривляются. Неевклидовы геометрии (Гомес) - страница 65

Приложение

Теория относительности и новые геометрии

В 1905 г. Альберт Эйнштейн опубликовал «Специальную теорию относительности», которая вызвала сильнейшее потрясение основ физики со времен начала научной революции и фундаментального труда Исаака Ньютона Principia Mathematica («Математические начала натуральной философии»).

Эйнштейн предложил новый взгляд на реальность. Событие происходит в трехмерном пространстве в определенный момент времени. Другими словами, оно происходит в пространстве-времени и описывается четырьмя координатами: три из них определяют его положение в пространстве, а четвертая — во времени. Конечно, эти координаты задаются относительно некой системы координат. Поэтому место события в пространстве-времени зависит от положения наблюдателя, то есть от системы координат, используемой для определения события. Таким образом, различные наблюдатели видят событие по-разному, особенно если они сами движутся с разными скоростями.

Проанализируем эти понятия в геометрическом смысле. В теории относительности расстояние между двумя событиями называется интервалом и делится на две составляющие: пространство и время.

Пространственная составляющая — это расстояние между местонахождениями событий в трехмерном пространстве, в то время как временная составляющая — это промежуток времени между двумя событиями. Эти составляющие зависят от используемой системы координат и ее ориентации, поэтому различные наблюдатели могут получить разные результаты. Однако интервал, разделяющий два события в четырехмерном пространстве-времени, является абсолютным. Он один и тот же и для неподвижного наблюдателя, и для другого наблюдателя, движущегося с постоянной скоростью относительно неподвижного.

Для наблюдателей, улетающих от Земли со скоростью, близкой к скорости света, пространственные и временные составляющие интервала будут совершенно разными. Один наблюдатель может решить, что два события разделяют 200 лет, в то время как другой может сделать вывод, что они происходят одновременно. Их восприятие пространственных и временных составляющих может сильно отличаться от нашего. Геометрия пространства-времени оказывается странной. В четырехмерном пространстве расстояние между двумя точками (интервал между двумя событиями) является неизменным, в то время как две составляющие могут быть совершенно различны.

Через три года после того, как Эйнштейн опубликовал свою первую статью на эту тему, Герман Минковский упростил его теорию, предложив геометрическую интерпретацию, обосновывающую странные вычисления Эйнштейна. Конечно, геометрия Минковского была неевклидовой. Минковский использовал одну из самых важных идей Римана о том, что математическое пространство определяется способом измерения расстояний. Другими словами, формула расстояния определяет тип геометрии.