Обратите внимание: данная неопределенность не имеет ничего общего с неточными измерениями, которые могут получиться, если пользоваться плохой линейкой. Это неопределенность, неотъемлемая от нашего мироздания. Давайте вновь вспомним о переменчивой природе света, который ведет себя то как частица, то как волна. Отвергая возможность существования лазера, Бор и фон Нейман не вполне понимали, в каких ситуациях проявляется волновая, а в каких – корпускулярная природа света. В их времена лазер казался столь точным и сфокусированным источником энергии, что неопределенность положения фотонов в нем должна была практически отсутствовать. Это означало, что неопределенность импульса должна была быть настолько огромной, что фотоны разлетались бы с любой энергией в любом направлении, а это, казалось бы, противоречило идее плотного сфокусированного луча.
Они забывали, что свет может вести себя и как волна, а движение волн определяется другими законами. Во-первых, как можно узнать, где находится волна? Природа волны такова, что она одновременно распространяется во всех направлениях – а это сама неопределенность. Кроме того, в отличие от частиц, одни волны могут поглощать другие и объединяться друг с другом. Если бросить два камня в пруд, то самые большие волны возникнут там, где сойдутся круги от них. Ведь именно эта маленькая область будет получать энергию от волн, идущих с двух сторон одновременно.
В случае с лазером речь идет не о двух, а о триллионах триллионов «камней» (то есть электронов), запускающих волны света, которые постоянно смешиваются друг с другом. Важно понять, что принцип неопределенности неприменим к множествам частиц, а только к отдельно взятым частицам. В луче света, который как раз представляет собой множество частиц, мы не можем сказать, где находится любой отдельно взятый фотон. А при такой огромной неопределенности положения фотона внутри луча мы можем очень, очень точно направить его энергию, превращая свет в лазер. Такую лазейку очень сложно использовать, но, если овладеть ею, она дает человеку огромную силу. Именно поэтому журнал Time отметил заслуги Таунса, назвав его в 1960 году одним из «людей года» (в одном ряду с Полингом и Сегре). В 1964 году Таунс был удостоен Нобелевской премии по физике за свою работу над мазером.
Вскоре ученые осознали, что в эту лазейку вписываются не только фотоны. Поскольку для света характерен корпускулярноволновой дуализм, чем глубже вы проникаете в структуру протонов, электронов и других условно твердых частиц и анализируете их, тем более «рыхлыми» они становятся. Вещество на своем глубочайшем, самом загадочном квантовом уровне является неопределенным и волноподобным. А поскольку на такой глубине принцип неопределенности уже является математическим законом, определяющим, как должны пролегать границы между волнами, образующие их частицы также подчиняются принципу неопределенности.