Во-первых, существуют суператомы. Эти скопления, включающие в себя от восьми до ста атомов одного элемента, обладают сверхъестественной способностью «притворяться» отдельными атомами других элементов. Например, если правильно сгруппировать тринадцать атомов алюминия, они начинают проявлять такие же свойства, как ядовитый бром. В химических реакциях атом брома и такое скопление атомов алюминия совершенно неразличимы. Этому поразительному сходству не мешает даже то, что такое скопление в тринадцать раз крупнее атома брома, а алюминий не имеет ничего общего со столбцом ядовитых галогенов-лакриматоров. Другие скопления атомов алюминия напоминают по свойствам атомы благородных газов, полупроводники, кальций и иные элементы, расположенные в совершенно других областях периодической системы.
Описанный механизм работает так. Атомы упорядочиваются в виде многогранника, в котором каждый атом «имитирует» протон или нейтрон коллективного ядра. Электроны в такой структуре могут свободно перемещаться внутри ядерного пузыря, и все атомы совместно пользуются электронами. Ученые придумали для обозначения такого состояния вещества немного иронический термин «желий» (от слова «желе»). В зависимости от формы многогранника и от количества в нем граней и углов желий может выдавать в общее пользование большее или меньшее количество электронов. Если наберется семь таких электронов, кластер будет проявлять свойства брома, то есть галогена. Если четыре – желий напоминает по свойствам кремний, полупроводник. Атомы натрия также могут объединяться в желий и «подражать» другим элементам. Вполне возможно, что и многие другие элементы могут имитировать совершенно иные элементы, и вообще все элементы могут имитировать все другие элементы, и так далее, до полной неразберихи. Эти открытия наталкивают ученых на разработку параллельных периодических систем, в которых нашлось бы место для классификации всех подобных экзотических образований. Новые таблицы можно сравнить с полупрозрачными иллюстрациями из старинных анатомических атласов, которые нужно накладывать на «скелет» – таблицу Менделеева.
Впрочем, даже такие странные образования, как желий, по крайней мере, напоминают обычные атомы. Но есть и еще один способ углубления периодической таблицы. В физике существует понятие «квантовая точка». Ее можно сравнить с голографическим или виртуальным атомом, который тем не менее подчиняется всем законам квантовой механики. Квантовые точки получаются из разных элементов, однако наиболее легко получать их из индия. Это серебристый металл, дальний родственник алюминия. Он расположен прямо на границе между металлами и полупроводниками.