Том 37. Женщины-математики. От Гипатии до Эмми Нётер (Наварро) - страница 28

3>2 + 4>2= 5>2.

Это соотношение, по мнению некоторых специалистов, знали и применяли еще древние египтяне. Ферма в 1630 году прочел книгу Диофанта и отметил на полях, что подобные выражения для всех остальных показателей степени, то есть

x>3 + y>3  = z>3

x>4 + y>4 = z>4

x>5 + y>5 = z>5,

и так далее не имеют целых решений. Куб нельзя представить в виде суммы двух кубов, похожим образом нельзя представить ни четвертую, ни пятую, ни какую-либо другую степень. Ферма нашел этому поистине чудесное доказательство, но, к сожалению, поля книги оказались слишком узки для него (Ферма имел привычку делать пометки на полях прочитанных книг). Его знаменитая теорема на языке алгебры звучит так:

«Если х, у, z

и не равны нулю, то уравнение х>ny>n = z>n не имеет решений при n > 2».

На протяжении почти 400 лет никто не мог ответить на вопрос, верна ли гипотеза Ферма? Является ли она теоремой — иными словами, существует ли ее доказательство? Более того, если это в самом деле теорема, то где ошибся Ферма в своем предполагаемом «чудесном доказательстве», так как он, несомненно, ошибся? Крайне маловероятно, что гипотезу, над которой столько лет бились лучшие умы человечества, доказал сам Ферма.

Многовековое ожидание завершилось в 1995 году усилиями Эндрю Уайлса, которому удалось найти доказательство лишь со второй попытки, спустя несколько лет работы, при этом он использовал сложнейшие и новейшие методы теории чисел. Вопреки ожиданиям, найденная им связь между модулярными формами и эллиптическими кривыми, которую он применил в доказательстве, отличалась новизной. Таким образом, теорема Ферма наконец была доказана, и ее доказательство имело важные последствия для науки.



Гипотеза Ферма стала теоремой лишь в 1995 году. Пьер Ферма заявил, что доказал ее, но не привел доказательства.

* * *

УПРУГИЕ ПЛАСТИНКИ

Софи Жермен занялась изучением упругости пластин, узнав о результатах экспериментов немецкого инженера и физика Эрнста Хладни (1756–1827) — любопытных фигурах Хладни. Фигуры Хладни, подобно цирковым фокусам, были продемонстрированы ученым из Института Франции и даже Наполеону. Эти неожиданные узоры образуются при вибрации покрытых песком стеклянных пластинок под действием скрипичного смычка. Многие из них отличаются красотой и симметрией. Фигуры Хладни стали первым известным проявлением физического явления, позднее названного двумерными гармоническими колебаниями.

Академия наук организовала открытый конкурс, целью которого было найти законы, описывающие колебания упругих пластинок. В 1813 году поданная на конкурс статья Софи Жермен «О колебаниях упругих пластинок» была удостоена первой премии. Для Софи, которую часто обвиняли в том, что ее доказательства содержат пробелы и неясные моменты, присуждение премии было равносильно ритуалу посвящения в ученые.