Если бы числа могли говорить. Гаусс. Теория чисел (Лизана) - страница 19



Числа Ферма, названные так в честь Пьера де Ферма — первого, кто их изучал, — имеют следующий вид:

F>n = 2²>n+1,

где n — натуральное число.

Ферма определил такие простые числа с намерением, очень далеким от того, чтобы решать задачи построения многоугольников с помощью линейки и циркуля (а на самом деле удалось доказать, что не все числа такого вида простые).

Гаусс показал, что для построения правильного многоугольника с n сторонами с помощью линейки и циркуля необходимо, чтобы нечетные простые множители n были различными простыми числами Ферма. То есть правильный многоугольник можно построить, если число его сторон — это степень числа 2, простое число Ферма или произведение некоторой степени числа 2 (включая единицу) и различных простых чисел Ферма. Это то, что в математике известно как достаточное условие. Итак, если многоугольник имеет форму, определенную Гауссом, его можно построить. Естественным образом возникает вопрос, является ли это также необходимым условием. То есть нужно проверить, только ли такие многоугольники можно построить с помощью линейки и циркуля.

Пьер Ванцель, французский математик, в 1837 году доказал, что условие Гаусса является необходимым, и это превратило теорему в полное описание правильных многоугольников, которые можно построить с помощью линейки и циркуля. Математики называют такие условия тогда и только тогда. То есть у нас полностью определены правильные многоугольники, которые мы можем построить с помощью линейки и циркуля. Так, треугольник (3 = 2²>0 +1), квадрат (4 = 2²>1 ), пятиугольник (5 = 2²>1 +1) и шестиугольник (6 = 2-(2²>0 +1)) можно построить с помощью линейки и циркуля, а правильный семиугольник (7 =/= 2²>n + 1 V>n) нельзя. Далее, правильный восьмиугольник (8 = 2³) можно построить, а правильный девятиугольник (9 = 3² =/= 2²>n +1 V>n) >— нет· Очевидно, что многоугольник с 17 сторонами, построенный Гауссом, — это пример многоугольников, в которых число сторон точно совпадает с одним из чисел Ферма, так как F>2 = 2²>2 +1 = 17.

Но это не означает, что нет людей, которые посвящали бы свое время и энергию безуспешному нахождению способов построения семиугольников или других фигур, что, как доказано математиками, невозможно осуществить с помощью линейки и циркуля. Это касается квадратуры круга, трисекции угла или удвоения куба. Первой задачей со страстью, которая сохранилась всю жизнь, занимался не кто иной, как Наполеон. Однако эту битву, в отличие от битв с прусской армией, Наполеон не смог, да и не мог бы выиграть.

ГЛАВА 2 «Арифметические исследования»