но по результату Эйлера мы знаем, что сумма ряда конечна и на самом деле она равна π²/6, поэтому расстояние, которое должен пробежать Ахиллес, также конечно. Более того, расстояние, которое он пробегает до того, как догнать черепаху, — обозначим его через d — равно
d<=(1/2+π²/6) · D
Если мы выполним вычисления, получится, что d < 2,144 · D. Действительно, можно вычислить, что расстояние, которое пробегает Ахиллес, чтобы догнать черепаху, при его двойной скорости равно d = 2D.
Дзета-функция, которой пользовался Эйлер, — это действительная функция с действительным значением, то есть для действительного значения мы получаем результат, который также является действительным значением. Например, мы знаем, что
Благодаря этому можно изобразить функцию в виде графика на плоскости, которую математики обозначают R². Когда мы меняем область определения функции, то есть множество, в котором она принимает значения, на множество комплексных чисел, результат функции также становится комплексным числом. Если мы сочтем, как это сделал Эйлер, что комплексное число a + bi может быть представлено как пара (a, b) е R², и то же самое справедливо для ζ(α + bi), которое также является комплексным числом, то получается, что его графическое представление должно осуществляться в R>4, то есть в пространстве из четырех измерений. Построение графиков в пространствах из четырех измерений нам недоступно, однако Риман смог вообразить эту функцию в четырех измерениях и понял, что существует связь между простыми числами и нетривиальными нулями функции, то есть теми, действительная часть которых лежит строго между 0 и 1.
ЗАДАЧИ ТЫСЯЧЕЛЕТИЯ
Отмечая наступление нового тысячелетия, Институт Клэя выбрал семь математических задач, которые устояли перед всеми попытками их решения. Это было сделано в подражание Давиду Гильберту, который за 100 лет до этого определил перечень из 23 задач, ставших ориентиром для всех математиков XX века. Единственная задача, которая включена в оба списка, — это гипотеза Римана. Задачи тысячелетия охватывают самые важные области математики. Их перечень выглядит так.
1. Р относительно ΝΡ. Сформулирована Стивеном Куком в 1971 году. Возможно, это центральная проблема наук о вычислении. В основном математические проблемы сегодня классифицируются по классам Р и ΝΡ. Класс Р содержит все проблемы, которые могут быть решены с помощью алгоритма за полиномиальное время. Это означает, что число итераций ограничено многочленом, в котором переменная — «размер» проблемы. Эти проблемы решаемы с помощью компьютеров. Класс ΝΡ сформирован теми проблемами, для которых не существует алгоритмов в полиномиальном времени, но если у нас есть возможное решение проблемы из этого класса, то мы можем определить, хорошее оно или нет, за полиномиальное время. Из предыдущего определения следует, что любая проблема Р также является проблемой ΝΡ, тο есть любая проблема, решаемая в полиномиальном времени с помощью правильно подобранного алгоритма (Р), — это также проблема, которая допускает быструю проверку возможного решения (ΝΡ). Задача заключается в том, чтобы доказать (или опровергнуть), что любая проблема ΝΡ также является проблемой Р.