Это два обратных движения в одном протяжении счета, решил я.
Я видел их зрительно: горы, громадные глыбы основания, на которых присела, отдыхая, хищная птица степени, птица сознания для пространства. И точно тонкие стволы деревьев, ветки с цветами и живыми птицами, порхающими по ним, казалось время.
У пространства каменный показатель степени, он не может быть больше трех, а основание живет без предела; наоборот, у времени основание делается «твердыми» двойкой и тройкой, а показатель степени живет сложной жизнью, свободной игрой величин.
Там, где раньше были глухие степи времени, вдруг выросли стройные многочлены, построенные на тройке и двойке, и мое сознание походило на сознание путника, перед которым вдруг выступили зубчатые башни и стены никому не известного города.
Если в известном сказании Китеж-град потонул в глухом лесном озере, то здесь из каждого пятна времени, из каждого озера времени выступал стройный многочлен троек с башнями и колокольнями, какой-то Читеж-град.
Такие ряды, как 1053 = 3>3 + 3 + 3>3 + 2 + 3>3 + 1, где число членов равно основанию, показатель старшей степени дважды взятая тройка, а другие показатели убывают на единицу, или всем знакомое число 365 = 3>5 + 3>4 + 3>3 + 3>2 + 3>1 + 3>0 + 1, с одной стороны, вскрывали древнее отношение года к суткам, с другой стороны, древнему сказанию о Китеж-граде давали новый смысл.
Город троек со своими башнями и колокольнями явно шумел из глубины времени. Стройный город числовых башен заменил прежние пятна времени.
Я не выдумывал эти законы; я просто брал живые величины времени, стараясь раздеться донага от существующих учений, и смотрел, по какому закону эти величины переходят одна в другую, и строил уравнения, опираясь на опыт. И числовые скрепы величин времени выступали одна за другой в странном родстве с скрепами пространства, и в то же время двигаясь по обратному течению.
Число есть чаша, в которую может быть налита жидкость любой величины, а уравнение есть прибор, делающий вереницу величин, где твердые числа являются неподвижными гайками уравнения, его станком, а величины m, n – подвижными членами снаряда, колесами, рычагами, маховиками уравнения.
Иногда я мысленно сравнивал числа уравнения, твердые в своей величине, с костяком тела, а величины m, n – с мышцами и мясом туловища, приводящими в движение сказочных зверей.
В уравнении я различал мышечный состав и кости. И вот уравнения времени казались зеркальным отражением уравнений пространства.
Уравнения пространства походили на исчезнувших ископаемых зверей с громадным основанием тела и крохотным черепом, мозгом, венцом туловища.