Стандартное отклонение варьируется в зависимости от расхождения между средним значением и различными индивидуальными значениями, но всегда включает в себя 68,2 процента результатов. Два стандартных отклонения будут включать в себя 95 процентов результатов. И лишь 1 процент членов группы будет находиться далее двух с половиной стандартных отклонений от среднего значения.
Пользуясь такой системой расчета, ученые могут определить, насколько значимо отличается некий конкретный показатель от среднего и каковы шансы, что этот показатель означает действительно аномальное состояние, а не случайный вариант нормы.
Рисунок 2. В каждом случае стандартное отклонение (σ) означает удаленность от среднего показателя (μ) и включает в себя 68,2 процента результатов.
Пример: стандартные отклонения на практике
Предположим, что группа детей не нашла лучшего занятия, чем пострелять из лука, пытаясь попасть в яблочко большой, умеренно удаленной мишени. Предположим также, что к вечеру в мишени оказалась тысяча стрел, каким-то образом рассредоточенных по всей поверхности. На рисунке 3 изображены два возможных варианта расположения стрел.
Захотев узнать, как близко в среднем к яблочку попали стрелы, мы могли бы измерить расстояние от каждой стрелы до центра мишени, суммировать эти расстояния и разделить сумму на общее количество стрел. Допустим, одна стрела на рисунке 3А оказалась в 4 футах от яблочка, другая – в 14 футах, третья – в 9 футах, четвертая – в 23 футах и так далее. Если сложить расстояния тысячи стрел, получится 10 000. Таким образом, среднее расстояние стрел до центра мишени составит 10 футов. Расчет стандартного отклонения показывает, насколько разнообразны положения разных стрел с учетом их отдаленности от среднего показателя в 10 футов.
Статистики используют формулу, по которой расстояние каждой стрелы до яблочка вычитается из 10 и результат возводится в квадрат. Чем больше итоговое число, тем выше стандартное отклонение. Как видим, на данном рисунке положения стрел значительно отличаются друг от друга, поэтому число будет большим.
Рисунок 3. Несмотря на то что обе группы стрел имеют одинаковое среднее расстояние до яблочка, величина стандартного отклонения в них разная.
Теперь рассмотрим второй вариант, рисунок 3Б, и рассчитаем стандартное отклонение. В среднем расстояние от стрелы до центра мишени снова составляет 10 футов. Но стандартное отклонение, определенное путем вычитания расстояния каждой стрелы из среднего показателя, будет весьма небольшим. Это небольшое число говорит о том, что положения отдельных стрел относительно яблочка практически одинаковы.