У атомов тоже есть сердце. Резерфорд. Атомное ядро (Оррит) - страница 59

В эксперименте Чедвика полоний используется как генератор альфа- излучения. Оно должно облучать бериллий, из которого будут вырываться нейтроны. Они попадут на мишень из свинца, а усилитель зарегистрирует количество попаданий.


"Старые лаборатории, имеющие долгую историю и традиции, всегда хранят тайные сокровища. Идеи, высказанные в прошлом нашими ныне живущими и умершими учителями, повторяются сотни раз, а затем наступает забвение. Но сознательно или подсознательно эти идеи проникают в мысли тех, кто работает в старых лабораториях, и периодически это дает свои плоды".


ОТ ПОЗИТРОНА К РАСЩЕПЛЕНИЮ ЯДРА

Фредерик Жолио и Ирен Кюри упустили прекрасную возможность получить Нобелевскую премию, и это случилось с ними не единожды. Британский физик-теоретик Поль Дирак (1902- 1984) предсказал существование позитрона в 1928 году. Через четыре года в 1932 году американский физик Карл Андерсон, изучая космические лучи с помощью пузырьковой камеры, открыл существование частицы, имевшей равную с электроном массу, но в то же время обладавшую положительным зарядом. Это был антиэлектрон, или, как в конце концов его назвали, позитрон, частица антиматерии Дирака. Андерсон смог наблюдать ее, когда понял, что при воздействии магнитного поля она имеет такую же траекторию, как электроны, но обладая такой же массой, отклоняется в другую сторону из-за наличия у нее положительного заряда. Ее масса идентична электрону, но их заряды противоположны. Аппараты Жолио — Кюри также обнаружили эту необычную частицу, но она вновь осталась незамеченной ими. После открытия супруги решили, что позитроны представляют интересное поле для исследований. Они вновь воспользовались полонием как источником альфа- частиц и начали бомбардировку алюминиевой пластины. В определенный момент испускались позитроны, но внимание ученых привлек другой факт: после прекращения альфа-излучения алюминий — в ходе воздействия на него превратившийся в фосфор — продолжал испускать радиацию. Они проверяли свой прибор вновь и вновь, но все работало верно. Таким образом им удалось искусственно трансформировать стабильный материал, каким был алюминий, в радиоактивный. В результате наблюдений они также пришли к выводу, что распад, который приводил к радиоактивности, мог быть источником электронов и позитронов (β+- и β-радиоактивность). На этот раз их усилия были вознаграждены Нобелевской премией по химии в 1935 году.

Открытие Чедвика, с другой стороны, привело к развитию исследований по расщеплению ядра, в котором нейтроны играют решающую роль. Отто Ган и Лиза Мейтнер, сотрудничавшие с Резерфордом, были первыми, кому удалось осуществить это. Расщепление ядра основано на бомбардировке нейтронами разных материалов, таких как уран, который выбрали, потому что он был самым распространенным в ту эпоху. Как предсказал Резерфорд, нейтрон с большей легкостью мог проникать в ядро, воздействие нейтрона приводило к делению и расщеплению первоначального ядра. Это высвобождало большое количество энергии, а в результате реакции вместо одного атома урана возникали два атома меньшей массы: барий и криптон (см. рисунок 1). Это вызвало большое удивление Отто Гана, так как оба элемента были значительно более легкими по сравнению с ураном. На самом деле когда Ган впервые обнаружил барий, он не знал, откуда взялся этот элемент. Но в беседе они с Мейтнер установили, что его происхождение было связано с бомбардировкой урана нейтронами.