Музыкальная матрица Вселенной (Задорожников) - страница 13

«Без музыки в своей жизни мы отвергаем само внутреннее знание и наслаждение своим существованием» (Д. Уилкок).

Его Святейшество Свет

По всеобщему Закону аналогий, соответствующий уровень октавы вибраций содержится и в спектре видимого света. Сейчас известно, что частота видимого света как пульсирующее «возбуждение» жидкообразной энергии эфира это более высокая октава вибрации, чем частоты звука в музыкальной октаве. Белый свет с помощью призмы мы можем разложить на радугу из семи цветов прежде, чем начнутся иные уровни вибраций, не воспринимаемых зрительным анализатором.

Информация – сестра гармонии, или ее мать?

Форма корень понятия информация. Речь идет о геометрии, которая завершает триаду «свет звук геометрия», основную триаду нашего восприятия фундаментальных строительных блоков вибрации во Вселенной. Наряду с геометрией в физической форме вдруг появляются звуки музыки и цвета. Но обычно мы не думаем о физической геометрической форме в двух или трех измерениях, которая будет точно представлять эти вибрации. Однако такие исследователи, как Джеральд Хокинс, Бакминстер Фуллер и Ганс Дженни (или Йенни), показали, что звуковые вибрации будут образовывать определенные геометрические паттерны. На самом деле Джеральд Хокинс изучал не вибрацию, а ее производные в виде знаменитых «кругов на полях», когда сложные геометрические паттерны появляются буквально за одну ночь на разных полях всего мира. Изучив сотни таких образований, Хокинс нашел как повторяемость многих паттернов, так и их общность. Общее у всех это простые двумерные формы, такие как треугольник, квадрат и шестиугольник, совершенно вписанные в окружность так, что все вершины формы касаются окружности. Замечательно то, что площадь поверхностей внутренних геометрий, будучи разделена на площадь внешних кругов, демонстрировала «диатонические отношения» отношения, ответственные за вибрации музыки в Октаве. Именно это показал Пифагор на однострунном «монохорде», только вместо отношения длин струны, у нас имеется геометрическое отношение, указывающее на то же самое.

Ранее Хокинса доктор Бакминстер Фуллер со студентами впервые доказал, что звуковые вибрации обладают трехмерной структурой. Доказательства этого эффекта исследователи пользовались белым воздушным шаром, помещенным в ванну с темными чернилами и вибрирующим на чистых диатонических звуковых частотах. Чернила собирались и окрашивали те области шара, которые подвергались самому меньшему количеству движения. Эти области оказались равномерно распределенными «узлами» или точками, где все искажающие движения на поверхности шара взаимно уничтожались. Узлы связывались вместе абсолютно прямыми линиями чернил. То есть, звуки наблюдались как простые трехмерные геометрические формы, образующие линии, пересекающиеся на самом шаре.