5. Электричество и магнетизм (Фейнман) - страница 5

Следовательно, мы утверж­даем, что раз на заряд «действуют» силы, то в том месте, где он стоял, остается «нечто» и тогда, когда заряд оттуда убрали. Если заряд, расположенный в точке (х, у, z), в момент t ощущает действие силы F, согласно уравнению (1.1), то мы связываем векторы Е и В с точкой (х, у, z) в пространстве. Можно считать, что Е (х, y, z, t) и В (х, у, z, t) дают силы, действие которых ощутит в момент t заряд, расположенный в (х, у, z), при условии, что помещение заряда в этой точке не потревожит ни распо­ложения, ни движения всех прочих зарядов, ответственных за поля.

Следуя этому представлению, мы связываем с каждой точкой (х, у, z) пространства два вектора Е и В, способных меняться со временем. Электрические и магнитные поля тогда рассматри­ваются как векторные функции от х, у, z и t. Поскольку вектор определяется своими компонентами, то каждое из полей Е (х, у, 2, t) и В (х, у, z, t) представляет собой три математиче­ские функции от х, у, z и t.

Именно потому, что Е (или В) может быть определено для каждой точки пространства, его и называют «полем». Поле — это любая физическая величина, которая в разных точках про­странства принимает различные значения. Скажем, темпера­тура — это поле (в этом случае скалярное), которое можно записать в виде Т (х, у, z). Кроме того, температура может ме­няться и во времени, тогда мы скажем, что температурное поле зависит от времени, и напишем Т (х, у, z, t). Другим примером поля может служить «поле скоростей» текущей жидкости. Мы записываем скорость жидкости в любой точке пространства в момент t в виде v (х, у, z, t). Поле это векторное.

Вернемся к электромагнитным полям. Хотя формулы, по которым они создаются зарядами, и сложны, у них есть следую­щее важное свойство: связь между значениями полей в некото­рой точке и значениями их в соседней точке очень проста. Нескольких таких соотношений (в форме дифференциальных уравнений) достаточно, чтобы полностью описать поля. Именно в такой форме законы электродинамики и выглядят особенно просто.



Фиг. 1.2. Векторное поле, пред­ставленное линиями, касательны­ми к направлению векторного поля в каждой точке.

Плотность линий указывает величину вектора поля.

Немало изобретательности было потрачено на то, чтобы помочь людям мысленно представить поведение полей. И самая правильная точка зрения — это самая отвлеченная: надо про­сто рассматривать поля как математические функции коорди­нат и времени. Можно также попытаться получить мысленную картину поля, начертив во многих точках пространства по век­тору так, чтобы каждый из них показывал напряженность и направление поля в этой точке. Такое представление приво­дится на фиг. 1.1. Можно пойти и дальше: начертить линии, которые в любой точке будут касательными к этим векторам. Они как бы следуют за стрелками я сохраняют направление поля. Если это сделать, то сведения о