В большинстве случаев лейкемия развивается у детей в возрасте от двух до пяти лет и редко встречается после двенадцати. Предполагается (хотя это и неизвестно наверняка), что клоны предшественников В-клеток с гибридным геном через какое-то время после рождения ребенка вымирают. Но Гривз установил, что клоны с гибридным геном в некоторых случаях могут выживать до тех пор, пока в игру не вступит отложенный инфекционный фактор. Гибридный ген активирует в предшественниках В-лимфоцитов молекулу, называемую рецептором эритропоэтина, которая в норме активна только в предшественниках красных кровяных клеток, где она заставляет их делиться и не дает умирать. Иными словами, гибридный ген использует механизм выживания, предназначенный для другого типа клеток. Когда через несколько лет, рассуждает Гривз, носящий этот ген ребенок подпадает под действие отложенного инфекционного фактора, его иммунная система запускает интенсивную реакцию. В конце концов, его организм начинает производить цитокин, известный как трансформирующий фактор роста бета (TGF-β), который снижает чрезмерное воспаление за счет того, что останавливает деление клеток – предшественников лимфоцитов и прекращает мобилизацию иммунных клеток на борьбу с инфекцией. Однако лимфоциты с гибридным геном глухи к TGF-β. В то время как образование нормальных лимфоцитов затормаживается, мутантные лимфоциты продолжают активно делиться и оказываются доминирующими в костном мозге. Таким образом, отложенная инфекция способствует быстрому увеличению количества мутантных клонов за счет нормальных клеток, и эта пролиферация становится прелюдией к развитию симптоматической лейкемии. В настоящее время Гривз также установил, как именно лимфоциты с гибридным геном увеличивают количество раковых мутаций. В этом оказался повинен процесс, который эволюция создала исключительно для лимфоидных клеток – и который, как выяснилось, скрывает в себе серьезный дефект.
Ключевую роль в злокачественном развитии, объясняет Гривз, играет механизм, позволяющий нашим B-клеткам производить широкое разнообразие антител, с тем чтобы эффективно распознавать антигены, представленные на поверхности вторгающихся в наш организм микробов, и давать им отпор. Молекулы иммуноглобулина, из которых состоят наши антитела, имеют гипервариабельные участки, способные быстро перестраиваться и создавать почти бесконечное число генных мутаций. Около 500 миллионов лет назад наши первые позвоночные предки обзавелись двумя специальными рекомбинантными ферментами – RAG1 и RAG2. Сегодня эти ферменты целенаправленно воздействуют на гены наших иммуноглобулиновых антител и заставляют их мутировать, создавая бесчисленные рекомбинации. Эти рекомбинантные ферменты активны только в лимфоидных клетках, и в норме, как только они выполняют свою работу и клетка перестает делиться и превращается в зрелый В-лимфоцит, они отключаются. Однако в присутствии гибридного гена, когда клетки продолжают делиться и не достигают полной зрелости, производство рекомбинантых ферментов RAG1 и RAG2 не прекращается. Вскоре их становится так много, что им попросту не хватает генов иммуноглобулина, которые они могут разрéзать на куски и перетасовать, поэтому они начинают охоту на другие гены. Так временное и точно нацеленное мутагенное воздействие на молекулы иммуноглобулина перерастает в рекомбинантный хаос. В результате такого побочного действия рекомбинантных ферментов, клетки – предшественники лимфоцитов, пойманные в круговорот клеточного деления без достижения полной дифференциации и зрелости, увеличивают число дополнительных мутаций до десятка и более. «Эволюция не создает идеальные механизмы, как нам бы того хотелось, она просто выбирает оптимальные, – говорит Гривз. – И в данном случае побочным эффектом этого механизма иммунной защиты может быть развитие рака крови в детском возрасте. Это пример не очень умного эволюционного дизайна, когда одно вещество – рекомбинантный фермент – может быть одновременно необходимым и опасным для жизни».