Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией (Тейлор) - страница 153

Чарльз Свонтон из Центра исследований рака Лондонского исследовательского института показал, как именно тетраплоидия – удвоение генома – вызывает хромосомную нестабильность и ускоряет эволюцию опухоли при раке толстой кишки. Исследователи обнаружили, что в группе из 150 пациентов с колоректальным раком тетраплоидия в пять раз увеличивала вероятность рецидива в течение двух лет после лечения. Наблюдая за несколькими тетраплоидными клонами колоректального рака в клеточной культуре, команда Свонтона выявила значительные различия между геномами тетраплоидных клонов и диплоидных раковых клеток, включая потерю больших участков 4-й хромосомы, что предсказывало очень плохой исход для пациентов. Свонтон убежден, что такие удваивающие геном события в опухоли, как хромотрипсис, специально нацелены на создание «многообещающих монстров» и представляют собой раковый аналог «сальтаций» (проще говоря, «скачков») – так многие биологи в XVIII–XIX веках называли быстрые и радикальные макромутационные изменения, которые, по их мнению, движут эволюцией живых организмов. До Дарвина большинство эволюционистов были последователями сальтационизма, в том числе Этьен Жоффруа Сент-Илер и Ричард Оуэн: оба предполагали, что именно разного рода «монстры» могут становиться основателями новых видов путем мгновенного перехода от одной формы к другой. Рихард Гольдшмидт – названный еретиком за свою теорию «многообещающих монстров» – был сальтационистом XX века. В настоящее время появляется все больше доказательств того, что тетраплоидия, анеуплоидии, хромосомная нестабильность и значительные изменения числа копий генов потенциально могут вызывать подобные сальтационные (скачкообразные) изменения и обеспечивать эволюцию рака.

Раковые клетки, несомненно, являются монстрами. Их раздутые, аномальные ядра бросаются в глаза, когда вы смотрите на них под микроскопом, а современные методы молекулярно-биологических исследований раскрывают чудовищную аномальность их геномов. Но они также являются «многообещающими монстрами» в том смысле, что их шансы на выживание ничтожно малы. Как отмечают Гривз и Мейли, время удвоения раковых клеток составляет от одного до двух дней, тогда как время удвоения опухоли – от шестидесяти до двухсот дней. Это говорит о том, что большинство раковых клеток умирает, прежде чем успевает пройти деление. «В условиях сильнейшего внешнего стресса, – говорит Гривз, – пытаясь спастись или адаптироваться к обстоятельствам, раковые клетки идут по пути создания нестабильности и радикальных изменений. Другими словами, опухоль использует стратегию "многообещающих монстров", о которой писал Гольдшмидт. План игры таков: "ОК, я пойду ва-банк – пусть 99,9 процента клеток умрут, зато у меня будет один победитель"». Если массивная геномная перестройка действительно приводит к созданию «многообещающего монстра», способного дать рождение жизнеспособным клонам, опухоль успешно прогрессирует.