Очевидное? Нет, еще неизведанное… (Смилга) - страница 26

Тем не менее в данном случае физики основательно просчитались. Лишь Эйнштейн показал, что до теории относительности они, по существу, не знали, с какими представлениями о природе мира, о природе времени и пространства связана их наука.

Сейчас всем ясно, что такие понятия, как время или длина, нуждаются в совершенно четком определении, что в физике нет и не может быть места для самоочевидных утверждений.

Однако необходим был Эйнштейн, чтобы эти замечания, столь убедительные, когда их высказывают в общей форме, на деле стали достоянием ученых.

Физик XIX столетия не интересовался основами основ своей науки в первую очередь потому, что был убежден в невозможности появления каких-либо принципиально новых теорий.

Можно повторить, что в аналогичном случае математики оказались принципиальнее. Примерно два тысячелетия геометры мучились над доказательством пятого постулата Эвклида (постулата параллельности), руководствуясь при этом, пожалуй, только чисто эстетическими соображениями. Постулат о параллельных прямых выделялся среди остальных аксиом геометрии своей сравнительной неочевидностью и обособленностью. Именно это очень не нравилось математикам. Никакой другой причины для объяснения настойчивых попыток доказать пятый постулат не видно.

И авторы неэвклидовой геометрии (Лобачевский, Бояи, Гаусс) пришли к своим представлениям не потому, что геометрия Эвклида не соблюдалась на практике, а на основе чисто умозрительных построений.

Но если математики могли чисто логически прийти к идее, что возможны различные системы аксиом, что пространство может описываться различными геометриями, то физикам такой путь не был доступен. Во-первых, основы физики (ее аксиомы) тогда, по существу, не были разработаны. А во-вторых, сам характер исследовательской работы воспитывал предубеждение против скрупулезных логических, излишне абстрактных рассуждений. И только гений Эйнштейна помог физикам синтезировать оба метода.

Поэтому, зная, что детальный анализ основных положений классической физики необходим для понимания теории относительности, мы можем спокойно продолжать.

Посмотрим, как еще следует дополнить математическое определение длины. Мы оперировали с масштабными отрезками и с реальными физическими свойствами. Но эти свойства изменяются в зависимости от температуры, давления и прочих условий. И может оказаться, что эти свойства всегда изменяются даже в результате движения. Ну, скажем, так. У вас есть два стальных стержня — один в Москве, другой в Ленинграде. Если вы привезете ленинградский стержень в Москву и сравните с московским, они окажутся равны (то есть совпадут). А если заставить ленинградский стержень проделать более длинный путь, он может оказаться короче. Это предположение звучит дико, но оно не исключено.