Компьютерные сети. Принципы, технологии, протоколы (Олифер, Олифер) - страница 36

а

IS

о-о

о-о

б

Рис. 2.9. Варианты связи компьютеров

Мы можем соединять каждый компьютер с каждым или же связывать их последовательно, предполагая, что они будут общаться, передавая сообщения друг другу «транзитом». Транзитные узлы должны быть оснащены специальными средствами, позволяющими им выполнять эту специфическую посредническую операцию. В качестве транзитного узла может выступать как универсальный компьютер, так и специализированное устройство.

От выбора топологии связей существенно зависят характеристики сети. Например, наличие между узлами нескольких путей повышает надежность сети и делает возможным распределение загрузки между отдельными каналами. Простота присоединения новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой. Экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длина линий связи.

Среди множества возможных конфигураций различают полносвязные и неполносвязные.

Полносвязная топология (рис. 2.10, а) соответствует сети, в которой каждый компьютер непосредственно связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Действительно, в таком случае каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с,каждым из остальных компьютеров сети. Для каждой пары компьютеров должна быть выделена отдельная физическая линия связи. (В некоторых случаях даже две, если невозможно использование этой линии для двусторонней передачи.) Полносвязные топологии в крупных сетях применяются редко, так как для связи N узлов требуется N(N - 1)/2 физических дуплексных линий связей, то есть имеет место квадратичная зависимость от числа узлов. Чаще этот вид топологии используется в многомашинных комплексах или в сетях, объединяющих небольшое количество компьютеров.

Рис. 2.10. Типовые топологии сетей

Все другие варианты основаны на неполносвязных топологиях, когда для обмена данными между двумя компьютерами может потребоваться транзитная передача данных через другие узлы сети.

Ячеистая топология>1 получается из полносвязной путем удаления некоторых связей (рис. 2.10, б). Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.

В сетях с кольцевой топологией (рис. 2.10, в) данные передаются по кольцу от одного компьютера к другому. Главным достоинством кольца является то, что оно по своей природе обеспечивает резервирование связей. Действительно, любая пара узлов соединена здесь двумя путями — по часовой стрелке и против нее. Кроме того, кольцо представляет собой очень удобную конфигурацию для организации обратной связи — данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому источник может контролировать процесс доставки данных адресату. Часто это свойство кольца используется для тестирования связности сети и поиска узла, работающего некорректно. В то же время в сетях с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какого-либо компьютера не прерывался канал связи между остальными узлами кольца.