Знание-сила, 2006 № 08 (950) (Журнал «Знание-сила») - страница 21

Как бы то ни было, темная энергия определенно «темна», по крайней мере в двух смыслах. Во-первых, она невидима — не излучает света, не поглощает и не отражает его. Во-вторых, ее физическая природа и микроскопическая структура полностью неизвестны. При (почти катастрофическом) недостатке знаний о физике темной энергии, с нею тем не менее можно продуктивно работать, — прежде всего, наблюдать ее, что, конечно, важнее всего, но также и изучать ее теоретическими средствами.

В наблюдениях темная энергия предстает перед нами как объект, для которого вполне пригодно макроскопическое (то есть усредненное по определенным пространственным масштабам) описание. Макроскопическим уровнем приходится в основном ограничиваться пока и в теории. Но даже и в этом случае мы сталкиваемся с затруднениями, когда требуется (например, для педагогических целей) дать ей какое-то общее определение, — особенно в случае, если темная энергия необязательно тождественна энергии ЭГ-вакуума. Действительно, важнейшее отличительное свойство темной энергии понятно — она источник всемирного антитяготения: но не ясно, под какое более общее понятие физики ее можно было бы подвести. Если, однако, не стремиться к слишком большой строгости, то темную энергию можно и в самом общем случае понимать феноменологически как некую сплошную среду, заполняющую все пространство мира. Тогда она оказывается в одном ряду с другими компонентами космической среды, заполняющими то же пространство.

До 1998—2000 годов были известны три таких компоненты: 1) «обычное вещество», то есть протоны, нейтроны и электроны, из которых состоят планеты, звезды и другие обычные тела природы (считая и нас самих); за этой компонентой закрепилось название «барионы» (хотя электроны к тяжелым частицам и не относятся); 2) «темное вещество», состоящее из гипотетических нерелятивистских элементарных частиц, не участвующих (в отличие от барионов) в сильном взаимодействии; 3) «излучение», под которым понимаются реликтовые фотоны и нейтрино, а также гравитоны и другие возможные ультрарелятивистские частицы. Эти три космические компоненты, или, как сейчас чаше говорят, космические энергии, создают тяготение. Под темной энергией нужно тогда понимать четвертую космическую энергию, отличительным свойством которой служит способность создавать не тяготение, а универсальное космическое отталкивание. Это феноменологическое определение темной энергии мы и будем далее иметь в виду.

Барионы и темное вещество, если рассматривать их в самом большом космологическом масштабе (100—300 Мпк и более), заполняют пространство однородно — в среднем по этим масштабам; излучение же почти идеально однородно и изотропно. Можно предположить, что и темная энергия тоже равномерно заполняет пространство. Для ЭГ-вакуума это определенно так; но то же самое весьма вероятно и в самом общем случае — это подсказывает то обстоятельство, что темная энергия обнаруживается и на самых больших, и на относительно малых расстояниях. Тогда из имеющихся сейчас наблюдательных данных вытекает, что на нее приходится приблизительно 70 процентов полной плотности современной Вселенной. При этом антитяготение оказывается, как мы видим, универсальным и притом доминирующим, судя по его плотности, феноменом природы. В наблюдаемой Вселенной антитяготение сильнее тяготения и в масштабе всего мира как целого, и в определенных локальных масштабах, о чем мы скажем в конце статьи.