Как не ошибаться. Сила математического мышления (Элленберг) - страница 303

И эти теоремы касаются не просто абстрактных геометрий, созданных только ради того, чтобы доказать какую-то мысль. В постэйнштейновскую эпоху мы понимаем, что неевклидова геометрия – не просто игра. Нравится вам это или нет, но именно так в действительности выглядит пространственно-временной континуум.

Такая история повторяется в области математики снова и снова: мы разрабатываем метод, применимый к решению одной задачи, и, если это хороший метод (то есть метод, содержащий поистине новую идею), в большинстве случаев мы обнаруживаем, что то же самое доказательство работает во многих ситуациях, которые могут отличаться от исходной ситуации в такой же мере, в какой сфера отличается от плоскости, или даже больше. В настоящее время молодой итальянский математик Оливия Карамелло создает настоящую сенсацию своими заявлениями, что теории, которые управляют различными областями математики, по сути своей тесно взаимосвязаны друг с другом (если вы отдаете предпочтение формальным терминам, они «классифицированы в соответствии с одними и теми же топосами Гротендика»). Следовательно, теоремы, которые доказаны в одной области математики, можно спокойно перенести в другую область, которая кажется на первый взгляд совершенно иной. Сейчас слишком рано говорить, удалось ли Карамелло создать «странный новый мир», как это сделал Бойяи, но ее работа в значительной степени согласуется с давней традицией в математике, частью которой был Бойяи.

Эта традиция обозначается термином «формализм». Именно об этом говорил Годфри Гарольд Харди, когда с восхищением отметил, что математики XIX столетия начали наконец спрашивать «как определить 1 − 1 + 1 − 1 +…», а не «что есть 1 − 1 + 1 − 1 +…». Это позволяло им избежать «ненужных затруднений», преследовавших математиков более ранних времен. Согласно самой чистой версии этой точки зрения, математика становится своего рода игрой с участием символов и слов. Утверждение можно считать теоремой, если его выводят из аксиом посредством логических операций. Но что к чему отсылают аксиомы и теоремы, что они означают – этим пусть занимается кто-то другой. Что такое Точка, Прямая, лягушка или кумкват? Это может быть все, что ведет себя так, как того требуют аксиомы, а смысл можно выбирать, исходя из текущих потребностей. Сугубо формальная геометрия – это геометрия, которой можно заниматься, даже если вы никогда не видели или не представляли себе точку или прямую; это геометрия, в которой не имеет значения, как на самом деле выглядят точки и прямые в обычном их понимании.