с разбиванием щита вдребезги, которым он сам давал такие названия, как «плевок тебе в лицо» или «турбосексофонный восторг».)
Означает ли это, что явления «счастливой руки» не существует? Пока еще нет. Ведь по большому счету «счастливая рука» не являет собой общую закономерность, при которой попадание следует за попаданием, а промах – за промахом. Это мимолетное явление, когда на площадке мячом владеет высшее баскетбольное существо, обитающее в теле игрока на протяжении короткого блистательного мига, – которое приходит и уходит без предупреждения. Спайк Альбрехт на десять минут превращается в Рэя Аллена, безжалостно реализует серию трехочковых бросков, а затем снова становится Спайком Альбрехтом. Может ли статистический тест обнаружить это? Теоретически почему бы и нет? Гилович, Валлон и Тверски изобрели хитрый способ выявления подобных интервалов – мигов неудержимой решимости. Они разбили результаты каждого игрока за сезон на непересекающиеся последовательности по четыре броска в каждой. Предположим, общая цепочка попаданий (H – hit) и промахов (M – miss) Доктора Джея выглядела так:
hmhhhmhmmhhhhmmh
В таком случае его последовательности были бы такими:
hmhh, hmhm, mhhh, hmmh…
Затем Гилович, Валлон и Тверски подсчитали, сколько таких последовательностей были «хорошими» (3 или 4 попадания), «средними» (2 попадания) или «плохими» (0 или 1 попадание). Затем, будучи истинными последователями Фишера, они проанализировали результаты нулевой гипотезы, которая гласит, что такой вещи, как «счастливая рука», нет.
Существует шестнадцать возможных последовательностей из четырех бросков: первый бросок может завершиться либо попаданием (H), либо промахом (М), и по каждому из этих вариантов есть две возможности для второго броска, что дает нам всего четыре варианта для первых двух бросков (вот эти варианты: HH, HM, MH, MM). По каждому из этих вариантов есть две возможности для третьего броска, что дает восемь возможных последовательностей из трех бросков, а еще одно удвоение с учетом последнего броска в последовательности дает 16 вариантов. Ниже перечислены все эти варианты, разделенные на группы хороших, средних и плохих последовательностей.
Хорошие: hhhh, mhhh, hmhh, hhmh, hhhm
Средние: hhmm, hmhm, hmmh, mhhm, mhmh, mmhh
Плохие: hmmm, mhmm, mmhm, mmmh, mmmm
В случае игрока с показателем реализации бросков 50 %, такого как Доктор Джей, все 16 возможных последовательностей должны быть в равной степени вероятными, поскольку каждый бросок с равной вероятностью может завершиться попаданием или промахом. Следовательно, вероятность того, что в случае Доктора Джея последовательности из четырех бросков окажутся хорошими, составляет 5/16, или 31,25 %, средними – 37,5 %, плохими – 31,25 %.