Сейчас. Физика времени (Мюллер) - страница 72

Больцман постулировал, что статистический вес состояния определяет вероятность реализации такого состояния. Наибольшую вероятность имеет равномерное распределение молекул в объеме. При расчете статистического веса Больцман включал также количество вариантов обмена энергией между частицами.

Ученый понял, что подобный подход может оказаться ключом к более глубокому пониманию энтропии. Вычислив статистический вес состояния W, он нашел, что натуральный логарифм этого числа пропорционален энтропии! Это было удивительное открытие. До этого термин «энтропия» использовался в чисто техническом смысле, обозначая минимизацию потерь тепла. Больцман показал, что это фундаментальная величина, основывающаяся на абстрактной математике и статистической физике. Вот его уравнение:

Энтропия = k lg W.

Число k – фундаментальная мировая постоянная, чтобы переводить lg W[107], безразмерную величину, в понятную инженерам энтропию, которая измеряется в калориях на градус или джоулях на градус. Сегодня k называется постоянной Больцмана; она определяет связь между температурой и энергией. (Я использовал ту же букву k в уравнении Эйнштейна, касающемся общей теории относительности, но это другое число.) Эта постоянная настолько важна, что каждый студент, изучающий физику, запоминает ее наизусть[108]. Больцман так гордился своим уравнением, что завещал выгравировать его на своей могиле, что и было сделано.

Определение множества гугол было придумано девятилетним Милтоном Сироттой, когда его дядя математик Эдвард Каснер попросил нарисовать после единицы столько нолей, сколько мальчик был в состоянии изобразить. Позднее они вдвоем решили, что гугол – это число, обозначаемое единицей со 100 нолями. Это можно записать так: 1 гугол = 10100. (Компания Google была названа по этому слову, правда с ошибкой в написании, Шоном Андерсоном, другом основателя Google Ларри Пейджа.) Количество атомов в нашей Вселенной оценивается в 10>78. Это меньше, чем гугол, на 1 с 22 нолями. Однако статистический вес контейнера с газом, то есть число способов достижения его макроскопического состояния, – это 1 с 10>25 нолями. Это число –



– многократно больше гугола. Но меньше гуголплекса.

Что же такое гуголплекс? Это монстроподобное число определяется как 1 с гуголом нолей. (Это, кстати, был первоначальный вариант названия компании Google, предложенный Андерсоном.) Оно может быть записано как



Оно так огромно, что многие считают его нереальным. Оно больше, чем количество кубических миллиметров в известной нам Вселенной. Но оно используется в статистической физике при расчете энтропии Вселенной, которая оценивается австралийскими учеными Часом Эганом и Чарльзом Лайнвивером величиной 3 × 10